Millevert Charissa, Vidas-Guscic Nicholas, Adhikari Mohit H, Miranda Alan, Vanherp Liesbeth, Jonckers Elisabeth, Joye Philippe, Van Audekerke Johan, Van Spilbeeck Ignace, Verhoye Marleen, Staelens Steven, Bertoglio Daniele, Weckhuysen Sarah
Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, 2610, Belgium; Dept. of Neurology, University Hospital, Antwerp, 2610, Belgium; University of Antwerp, μNEURO Research Centre of Excellence, Antwerp, 2610, Belgium.
University of Antwerp, Bio-Imaging Lab, Antwerp, 2610, Belgium; University of Antwerp, μNEURO Research Centre of Excellence, Antwerp, 2610, Belgium.
EBioMedicine. 2025 May;115:105720. doi: 10.1016/j.ebiom.2025.105720. Epub 2025 Apr 18.
Investigating dynamic changes during normal brain development is essential for understanding neurodevelopmental disorders (NDDs) and assessing the impact of novel therapies for these conditions. Rodent models, with their shorter developmental timeline, offer a valuable alternative to humans. This study aimed to characterise brain maturation in mice using a longitudinal, multimodal imaging approach.
We conducted an in vivo imaging study on 31129/Sv mice with a complete longitudinal dataset available for 22 mice. Resting-state functional MRI (rs-fMRI), diffusion tensor imaging (DTI), and [F]SynVesT-1 PET were used to examine the development of brain functional connectivity (FC), white matter integrity, and synaptic density at three developmental stages: infancy (P14-21), juvenile (P32-42), and adulthood (P87-106).
From infancy to juvenile age, we observed a significant decrease in FC and synaptic density, alongside increases in fractional anisotropy (FA) and decreases in mean, axial, and radial diffusivity (RD). From juvenile to adult age, synaptic density and FC stabilised, while FA further increased, and RD continued to decrease. The default mode like network was identifiable in mice across all developmental stages.
Our findings mirror established patterns of human brain development, with infant mice allowing us to capture critical brain developmental changes, underscoring the translational relevance of our findings. This study provides a robust framework for normal rodent neurodevelopment and establishes a foundation for future research on NDDs in mice and the impact of novel treatments on neurodevelopment.
Supported by the University of Antwerp, Fonds Wetenschappelijk Onderzoek (FWO), the Queen Elisabeth Medical Foundation, the European Joint Programme on Rare Disease, and Fondation Lejeune.
研究正常脑发育过程中的动态变化对于理解神经发育障碍(NDDs)以及评估针对这些病症的新疗法的影响至关重要。啮齿动物模型由于其较短的发育时间表,为人类研究提供了有价值的替代方案。本研究旨在使用纵向多模态成像方法来表征小鼠的脑成熟过程。
我们对31129/Sv小鼠进行了一项体内成像研究,有22只小鼠可获得完整的纵向数据集。静息态功能磁共振成像(rs-fMRI)、扩散张量成像(DTI)和[F]SynVesT-1正电子发射断层扫描(PET)用于在三个发育阶段检查脑功能连接(FC)、白质完整性和突触密度的发育情况:婴儿期(P14 - 21)、幼年期(P32 - 42)和成年期(P87 - 106)。
从婴儿期到幼年期,我们观察到FC和突触密度显著降低,同时分数各向异性(FA)增加,平均、轴向和径向扩散率(RD)降低。从幼年期到成年期,突触密度和FC稳定,而FA进一步增加,RD继续降低。在所有发育阶段的小鼠中都可识别出默认模式样网络。
我们的研究结果反映了已确立的人类脑发育模式,幼鼠使我们能够捕捉关键的脑发育变化,强调了我们研究结果的转化相关性。本研究为正常啮齿动物神经发育提供了一个强大的框架,并为未来关于小鼠NDDs以及新疗法对神经发育影响的研究奠定了基础。
由安特卫普大学、科学研究基金(FWO)、伊丽莎白女王医学基金会、欧洲罕见病联合计划和勒琼基金会资助。