da Silva Raiane Rodrigues, Odelli Davide, Descamps Amandine, Scudeller Luisa Azevedo, Doumert Bertrand, Perez Javier, Delaplace Guillaume, de Carvalho Antônio Fernandes, de Sá Peixoto Junior Paulo Peres
Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil.
UMET CNRS Laboratory, INRAE, UMR 8207-UMET-PIHM, Lille University, 59652 Villeneuve d'Ascq, France - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France.
Food Res Int. 2025 May;209:116242. doi: 10.1016/j.foodres.2025.116242. Epub 2025 Mar 20.
The growing demand for sustainable food alternatives is driving increased research into mixed protein systems. In view of this scenario, this study aims to investigate the structural organization and rheological properties of mixed hydrogels formed by casein micelles (CMs) and pea protein through acid gelation, as well as to understand the effects of protein ratio and temperature on gel structure. The objective is to elucidate how these variables influence network formation at multiple scales, providing insights into the design of novel food structures. Small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and rheological analyses were used to assess gel properties. The results indicate that mixed gels exhibit non-monotonic rheological behavior, with strong structural changes depending on the CM:pea ratio. At smaller scales (submicron sizes), there is no significant difference between pea or casein aggregates formed in mixed gels compared to those in pure gels. However, at larger scales (micron to tens of microns), the presence of pea in casein gels (or vice versa) has a significant impact on the protein network structure and gel properties, as seen in pore sizes and rheological behavior. Furthermore, temperature plays a crucial role, with effects observed at temperatures above 40 °C, mainly in casein-rich systems. This study provides a new perspective on the structuring of mixed protein gels and contributes to the development of hybrid food products.
对可持续食品替代品日益增长的需求推动了对混合蛋白质体系的研究不断增加。鉴于这种情况,本研究旨在通过酸凝胶化研究酪蛋白胶束(CMs)和豌豆蛋白形成的混合水凝胶的结构组织和流变学性质,以及了解蛋白质比例和温度对凝胶结构的影响。目的是阐明这些变量如何在多个尺度上影响网络形成,为新型食品结构的设计提供见解。使用小角X射线散射(SAXS)、核磁共振(NMR)和流变学分析来评估凝胶性质。结果表明,混合凝胶表现出非单调流变行为,其结构变化强烈取决于CM与豌豆的比例。在较小尺度(亚微米尺寸)下,混合凝胶中形成的豌豆或酪蛋白聚集体与纯凝胶中的相比没有显著差异。然而,在较大尺度(微米到几十微米)下,酪蛋白凝胶中豌豆的存在(反之亦然)对蛋白质网络结构和凝胶性质有显著影响,如孔径和流变行为所示。此外,温度起着关键作用,在40°C以上的温度下观察到影响,主要在富含酪蛋白的体系中。本研究为混合蛋白质凝胶的结构化提供了新的视角,并有助于开发混合食品产品。