文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

替莫唑胺通过HIF1α/HIF2α调控的衰老相关重编程促进胶质母细胞瘤干性表达。

Temozolomide promotes glioblastoma stemness expression through senescence-associated reprogramming via HIF1α/HIF2α regulation.

作者信息

Wang Pan, Liao Bin, Gong Sheng, Guo HaiYan, Zhao Lu, Liu Jie, Wu Nan

机构信息

Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China.

Chongqing Medical University, Chongqing, China.

出版信息

Cell Death Dis. 2025 Apr 19;16(1):317. doi: 10.1038/s41419-025-07617-w.


DOI:10.1038/s41419-025-07617-w
PMID:40253386
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12009364/
Abstract

A critical challenge in glioblastoma multiforme (GBM) treatment is that tumors recurring after temozolomide (TMZ) therapy become more malignant, exhibiting increased invasiveness and stemness compared to the primary tumor. However, the underlying mechanisms remain unclear. While the majority of GBM cells are eradicated by TMZ, a subset enters cell cycle arrest, adopts a senescence-associated secretory phenotype (SASP), and activates senescence-related signaling pathways. These cells eventually escape senescence, re-enter the cell cycle, and form aggregates exhibiting stem-like characteristics such as elevated stemness marker expression, enhanced colony formation, increased invasiveness, and resistance to chemotherapy. Furthermore, these aggregates promote the invasion and chemotherapy resistance of surrounding cells. Gene Set Enrichment Analysis (GSEA) and KEGG pathway analysis of miRNA and mRNA sequences revealed activation of hallmark hypoxia and HIF1 signaling pathways. The study demonstrated that HIF1α and HIF2α expression fluctuates during and after TMZ treatment. Knockout of HIF1α and HIF2α in GBM cells exposed to TMZ reduced the formation of senescent cells and stem-like aggregates. These findings challenge the efficacy of TMZ therapy by highlighting its role in inducing the process of cellular senescence, thereby contributing to the enhanced stemness and malignancy of recurrent GBM. The regulatory roles of HIF1α and HIF2α are emphasized, underscoring the necessity of preventing senescent cell formation and inhibiting HIF1α/HIF2α expression to improve therapeutic outcomes.

摘要

多形性胶质母细胞瘤(GBM)治疗中的一个关键挑战是,替莫唑胺(TMZ)治疗后复发的肿瘤会变得更具恶性,与原发性肿瘤相比,其侵袭性和干性增加。然而,其潜在机制仍不清楚。虽然大多数GBM细胞被TMZ根除,但一小部分进入细胞周期停滞,呈现衰老相关分泌表型(SASP),并激活衰老相关信号通路。这些细胞最终逃脱衰老,重新进入细胞周期,并形成具有干细胞样特征的聚集体,如干性标志物表达升高、集落形成增强、侵袭性增加和对化疗耐药。此外,这些聚集体促进周围细胞的侵袭和化疗耐药。对miRNA和mRNA序列进行基因集富集分析(GSEA)和KEGG通路分析,发现标志性缺氧和HIF1信号通路被激活。该研究表明,在TMZ治疗期间和之后,HIF1α和HIF2α的表达会发生波动。在暴露于TMZ的GBM细胞中敲除HIF1α和HIF2α可减少衰老细胞和干细胞样聚集体的形成。这些发现通过强调TMZ在诱导细胞衰老过程中的作用,对TMZ治疗的疗效提出了挑战,从而导致复发性GBM的干性和恶性增强。强调了HIF1α和HIF2α的调节作用,突出了预防衰老细胞形成和抑制HIF1α/HIF2α表达以改善治疗效果的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/6751795fef8e/41419_2025_7617_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/7c35c5ed69ad/41419_2025_7617_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/2fe25a27f910/41419_2025_7617_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/e77cdd96ce1f/41419_2025_7617_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/d3cda793f804/41419_2025_7617_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/a6774ee0730f/41419_2025_7617_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/a36b1f5e0472/41419_2025_7617_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/6751795fef8e/41419_2025_7617_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/7c35c5ed69ad/41419_2025_7617_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/2fe25a27f910/41419_2025_7617_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/e77cdd96ce1f/41419_2025_7617_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/d3cda793f804/41419_2025_7617_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/a6774ee0730f/41419_2025_7617_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/a36b1f5e0472/41419_2025_7617_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f21/12009364/6751795fef8e/41419_2025_7617_Fig7_HTML.jpg

相似文献

[1]
Temozolomide promotes glioblastoma stemness expression through senescence-associated reprogramming via HIF1α/HIF2α regulation.

Cell Death Dis. 2025-4-19

[2]
The HIF1α/HIF2α-miR210-3p network regulates glioblastoma cell proliferation, dedifferentiation and chemoresistance through EGF under hypoxic conditions.

Cell Death Dis. 2020-11-18

[3]
HIF1α/HIF2α-Sox2/Klf4 promotes the malignant progression of glioblastoma via the EGFR-PI3K/AKT signalling pathway with positive feedback under hypoxia.

Cell Death Dis. 2021-3-24

[4]
In Silico and In Vitro Study of mRNA Biomarkers for Glioblastoma Multiforme Resistance to Temozolomide (TMZ): The Association with Stemness.

Asian Pac J Cancer Prev. 2024-12-1

[5]
Nuclear factor I A promotes temozolomide resistance in glioblastoma via activation of nuclear factor κB pathway.

Life Sci. 2019-10-12

[6]
Impact of developmental state, p53 status, and interferon signaling on glioblastoma cell response to radiation and temozolomide treatment.

PLoS One. 2025-2-7

[7]
The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma.

Cell Cycle. 2015

[8]
Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells.

J Exp Clin Cancer Res. 2019-6-18

[9]
miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/β-catenin signaling via targeting SOX2.

Life Sci. 2019-4-10

[10]
Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis.

Cell Death Dis. 2018-11-13

本文引用的文献

[1]
Recent advancement of autophagy in polyploid giant cancer cells and its interconnection with senescence and stemness for therapeutic opportunities.

Cancer Lett. 2024-5-28

[2]
Transcriptome analysis reveals tumor microenvironment changes in glioblastoma.

Cancer Cell. 2023-4-10

[3]
Single-cell RNA sequencing reveals tumor heterogeneity, microenvironment, and drug-resistance mechanisms of recurrent glioblastoma.

Cancer Sci. 2023-6

[4]
Glioma stem cell signature predicts the prognosis and the response to tumor treating fields treatment.

CNS Neurosci Ther. 2022-12

[5]
Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy.

Sci Transl Med. 2022-8-3

[6]
Three-Dimensional Growth of Prostate Cancer Cells Exposed to Simulated Microgravity.

Front Cell Dev Biol. 2022-2-17

[7]
HIF1α/HIF2α induces glioma cell dedifferentiation into cancer stem cells through Sox2 under hypoxic conditions.

J Cancer. 2022-1-1

[8]
Senescent tumor cells: an overlooked adversary in the battle against cancer.

Exp Mol Med. 2021-12

[9]
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.

Nucleic Acids Res. 2022-1-7

[10]
HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells.

Cell Rep. 2021-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索