Wei Jiacheng, Chen Feiying, Lu Xun, Fan Jigang, Li Mingyu, Huang Jianxiang, Liu Ning, Zhang Jian, Chai Zongtao, Lu Shaoyong
Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
Int J Biol Macromol. 2025 May;310(Pt 2):143324. doi: 10.1016/j.ijbiomac.2025.143324. Epub 2025 Apr 18.
Effective temporal and spatial regulation of CRISPR-Cas9 catalytic activity remains a key challenge, limiting the clinical application of CRISPR-Cas9 gene-editing. Here, we investigated the long-range allosteric inhibition of Staphylococcus aureus Cas9 (SauCas9) catalytic activity by its anti-CRISPR (Acr) protein, AcrIIA14, aiming to uncover remote allosteric mechanisms in large protein complexes and identify potential allosteric sites for the design of SauCas9 inhibitors. Through a combined computational-experimental framework integrating extensive molecular dynamics simulations, Markov state models, network community modeling, and site-directed mutagenesis, we identified canonical and non-canonical inhibitory states of SauCas9 regulated by AcrIIA14. Key domains, including REC, L1, HNH, L2, and PI, play crucial roles in transmitting the AcrIIA14-meidated inhibitory signal. Introducing point mutations on the routes of allosteric communication and analyzing these mutants using in vitro DNA cleavage assays and surface plasmon resonance analysis revealed that SauCas9 escaped AcrIIA14's inhibition owing to the disruption of AcrIIA14-meidated allosteric communication. Moreover, two cryptic allosteric sites on SauCas9 were identified as mutations of these sites prevented inhibition of SauCas9 by AcrIIA14. Overall, our results provide a dynamic understanding of CRISPR-Cas9 regulation and an avenue to design SauCas9 inhibitors with a broad range of applications in Cas9 enzyme catalysis, biophysics, and gene-editing.
对CRISPR-Cas9催化活性进行有效的时空调控仍然是一项关键挑战,限制了CRISPR-Cas9基因编辑的临床应用。在此,我们研究了金黄色葡萄球菌Cas9(SauCas9)的抗CRISPR(Acr)蛋白AcrIIA14对其催化活性的远程变构抑制作用,旨在揭示大型蛋白质复合物中的远程变构机制,并确定用于设计SauCas9抑制剂的潜在变构位点。通过一个结合了广泛分子动力学模拟、马尔可夫状态模型、网络群落建模和定点诱变的计算-实验框架,我们确定了由AcrIIA14调控的SauCas9的典型和非典型抑制状态。包括REC、L1、HNH、L2和PI在内的关键结构域在传递AcrIIA14介导的抑制信号中起关键作用。在变构通讯途径上引入点突变,并使用体外DNA切割试验和表面等离子体共振分析对这些突变体进行分析,结果表明,由于AcrIIA14介导的变构通讯中断,SauCas9逃脱了AcrIIA14的抑制。此外,在SauCas9上发现了两个隐秘的变构位点,因为这些位点的突变阻止了AcrIIA14对SauCas9的抑制。总体而言,我们的结果为CRISPR-Cas9调控提供了动态理解,并为设计在Cas9酶催化、生物物理学和基因编辑中有广泛应用的SauCas9抑制剂提供了一条途径。