Suppr超能文献

利用放射组学和临床特征及SHAP可视化增强术前胰腺瘘预测

Enhanced preoperative prediction of pancreatic fistula using radiomics and clinical features with SHAP visualization.

作者信息

Li Yan, Zong Kenzhen, Zhou Yin, Sun Yuan, Liu Yanyao, Zhou Baoyong, Wu Zhongjun

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Front Bioeng Biotechnol. 2025 Apr 4;13:1510642. doi: 10.3389/fbioe.2025.1510642. eCollection 2025.

Abstract

BACKGROUND

Clinically relevant postoperative pancreatic fistula (CR-POPF) represents a significant complication after pancreaticoduodenectomy (PD). Therefore, the early prediction of CR-POPF is of paramount importance. Based on above, this study sought to develop a CR-POPF prediction model that amalgamates radiomics and clinical features to predict CR-POPF, utilizing Shapley Additive explanations (SHAP) for visualization.

METHODS

Extensive radiomics features were extracted from preoperative enhanced Computed Tomography (CT) images of patients scheduled for PD. Subsequently, feature selection was performed using Least Absolute Shrinkage and Selection Operator (Lasso) regression and random forest (RF) algorithm to select pertinent radiomics and clinical features. Last, 15 CR-POPF prediction models were developed using five distinct machine learning (ML) predictors, based on selected radiomics features, selected clinical features, and a combination of both. Model performance was compared using DeLong's test for the area under the receiver operating characteristic curve (AUC) differences.

RESULTS

The CR-POPF prediction model based on the XGBoost predictor with the combination of the radiomics and clinical features selected by Lasso regression and RF exhibited superior performance among these 15 CR-POPF prediction models, achieving an accuracy of 0.85, an AUC of 0.93. DeLong's test showed statistically significant differences ( < 0.05) when compared to the radiomics-only and clinical-only models, with recall of 0.63, precision of 0.65, and F1 score of 0.64.

CONCLUSION

The proposed CR-POPF prediction model based on the XGBoost predictor with the combination of the radiomics and clinical features selected by Lasso regression and RF can effectively predicting the CR-POPF and may provide strong support for early clinical management of CR-POPF.

摘要

背景

临床相关的术后胰瘘(CR-POPF)是胰十二指肠切除术(PD)后一种严重的并发症。因此,CR-POPF的早期预测至关重要。基于此,本研究旨在开发一种将放射组学和临床特征相结合的CR-POPF预测模型,利用Shapley值加法解释(SHAP)进行可视化分析。

方法

从计划接受PD手术患者的术前增强计算机断层扫描(CT)图像中提取大量放射组学特征。随后,使用最小绝对收缩和选择算子(Lasso)回归以及随机森林(RF)算法进行特征选择,以筛选出相关的放射组学和临床特征。最后,基于所选的放射组学特征、所选的临床特征以及两者的组合,使用五种不同的机器学习(ML)预测器开发了15个CR-POPF预测模型。使用DeLong检验比较模型在受试者工作特征曲线(AUC)差异方面的性能。

结果

基于XGBoost预测器且结合了通过Lasso回归和RF选择的放射组学和临床特征的CR-POPF预测模型,在这15个CR-POPF预测模型中表现出卓越的性能,准确率达到0.85,AUC为0.93。与仅基于放射组学和仅基于临床的模型相比,DeLong检验显示出统计学上的显著差异(<0.05),召回率为0.63,精确率为0.65,F1得分为0.64。

结论

所提出的基于XGBoost预测器且结合了通过Lasso回归和RF选择的放射组学和临床特征的CR-POPF预测模型,能够有效地预测CR-POPF,并可能为CR-POPF的早期临床管理提供有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aaa/12006764/18fae901def8/fbioe-13-1510642-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验