Ye Xubin, Yin Yunyu, Cao Yingying, Liao Zhiyu, Wang Xiao, Liu Min, Wang Qianqian, Pan Zhao, Hu Zhiwei, Lin Hong-Ji, Chen Chien Te, Pao Chih-Wen, Ohresser Philippe, Nataf Lucie, Baudelet François, Yang Wenyun, Yang Jinbo, Cheng Jinguang, Yu Pu, Qiu Xianggang, Yang Yi-Feng, Xiang Tao, Long Youwen
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Nat Commun. 2025 Apr 21;16(1):3746. doi: 10.1038/s41467-025-59041-5.
Ferromagnetic order-induced insulator-to-metal transitions via the double exchange mechanism have been studied widely. In contrast, ferromagnetic or ferrimagnetic spontaneous magnetization induced metal-to-insulator transitions (MITs), especially occurring above room temperature, remain extremely limited, although such magnetoelectric materials hold great potential for low-loss multifunctional electronic and spintronic devices. Here, a novel 3d/5d hybridized quadruple perovskite oxide, CaCuNiOsO, was synthesized. It undergoes long-range Cu(↑)-Ni(↑)-Os(↓) ferrimagnetic order with a high Curie temperature of 393 K, maintaining a saturated magnetization of 2.15 μ/f.u. at 300 K. Intriguingly, an MIT is found to occur concurrently at the Curie temperature. Theoretical analyses reveal that the ferrimagnetic spontaneous order significantly renormalizes the electronic band structure, which can be further modified by electronic correlation and spin-orbit coupling effects, leading to the MIT via the Lifshitz-type mechanism. This work thus provides a paradigm material to realize ferrimagnetic spontaneous magnetization induced MIT at a high critical temperature toward advanced applications.
通过双交换机制的铁磁序诱导的绝缘体到金属的转变已得到广泛研究。相比之下,铁磁或亚铁磁自发磁化诱导的金属到绝缘体转变(MITs),特别是在室温以上发生的情况,仍然极为有限,尽管这类磁电材料在低损耗多功能电子和自旋电子器件方面具有巨大潜力。在此,合成了一种新型的3d/5d杂化四重钙钛矿氧化物CaCuNiOsO。它呈现长程Cu(↑)-Ni(↑)-Os(↓)亚铁磁序,居里温度高达393 K,在300 K时保持2.15 μ/f.u.的饱和磁化强度。有趣的是,在居里温度同时发生了MIT。理论分析表明,亚铁磁自发序显著重整了电子能带结构,其可通过电子关联和自旋轨道耦合效应进一步改变,从而通过里夫希茨型机制导致MIT。因此,这项工作提供了一种范例材料,可在高临界温度下实现亚铁磁自发磁化诱导的MIT,以用于先进应用。