Cheng Jian, Chen Ling, Zhang Yanzhi, Wang Min, Zheng Zhangyi, Jiang Lin, Deng Zhao, Wei Zhihe, Ma Mutian, Xiong Likun, Hua Wei, Song Daqi, Huo Wenxuan, Lian Yuebin, Yang Wenjun, Lyu Fenglei, Jiao Yan, Peng Yang
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, 215006, Suzhou, P. R. China.
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 215006, Suzhou, P. R. China.
Nat Commun. 2025 Apr 21;16(1):3743. doi: 10.1038/s41467-025-59025-5.
Stable operation of the gas diffusion electrodes is key for industrial-scale electrochemical CO reduction (eCOR). To enhance the electrolytic stability, we shield the Cu-coated gas diffusion electrode with a polycationic sheath via electrospinning and propose a Metal-Organic Double Layer (MODL) scheme to depict the triphasic interface. The as-fabricated electrode exhibits a high multi-carbon Faradaic efficiency of 91.2 ± 3.8%, along with operational stability for over 300 h at 300 mA cm in an alkaline flow cell. In a membrane electrode assembly with pure water as the anolyte, it further achieves an ethylene Faradaic efficiency over 50% at 200 mA cm. Mechanistic investigations unveil that replacing hydrated cationic counter ions in the conventional double layer with hydrogen bond-woven polycationic groups in the MODL allows simultaneously tailoring the local electric field and interfacial water structure. This study introduces a molecular-level redesign of the electric double layer in eCOR systems, achieving precisely tunable electrostatic characteristics and tailored chemical microenvironments while leveraging sustainable electrolysis systems to enable highly efficient and stable multi-carbon production.
气体扩散电极的稳定运行是工业规模电化学CO还原(eCOR)的关键。为提高电解稳定性,我们通过静电纺丝用聚阳离子鞘层屏蔽镀铜气体扩散电极,并提出一种金属有机双层(MODL)方案来描述三相界面。制备的电极在碱性流动池中表现出91.2±3.8%的高多碳法拉第效率,在300 mA cm下具有超过300小时的运行稳定性。在以纯水为阳极电解液的膜电极组件中,在200 mA cm下乙烯法拉第效率进一步超过50%。机理研究表明,用MODL中氢键编织的聚阳离子基团取代传统双层中的水合阳离子抗衡离子,能够同时调整局部电场和界面水结构。本研究介绍了eCOR系统中双电层的分子水平重新设计,在利用可持续电解系统实现高效稳定的多碳生产的同时,实现了精确可调的静电特性和定制的化学微环境。