Nadig Ajay, Replogle Joseph M, Pogson Angela N, Murthy Mukundh, McCarroll Steven A, Weissman Jonathan S, Robinson Elise B, O'Connor Luke J
Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
Nat Genet. 2025 May;57(5):1228-1237. doi: 10.1038/s41588-025-02169-3. Epub 2025 Apr 21.
Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)-a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the 'transcriptome-wide impact', which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders.
诸如Perturb-seq之类的单细胞CRISPR筛选能够大规模地对基因扰动进行转录组分析。然而,这些筛选产生的数据存在噪声,许多效应可能未被检测到。在此,我们引入转录组范围差异表达分析(TRADE)——一种用于真实差异表达效应分布的统计模型,该模型能适当地考虑估计误差。TRADE估计“转录组范围影响”,它量化了整个转录组中扰动的总效应。通过分析几个大型的Perturb-seq数据集,我们表明,许多转录效应在标准分析中未被检测到,但使用TRADE汇总分析时会出现。一个典型的基因扰动估计会影响45个基因,而一个典型的必需基因会影响500多个基因。我们发现不同细胞类型间扰动效应具有适度的一致性,确定了转录反应在不同剂量水平上存在定性差异的扰动,并阐明了神经精神疾病中基因与转录组相关性之间的关系。