Suppr超能文献

使用下一代测序技术对肾移植活检进行原型分析。

Archetypal Analysis of Kidney Allograft Biopsies Using Next-generation Sequencing Technology.

作者信息

Cortes Garcia Esteban, Giarraputo Alessia, Racapé Maud, Goutaudier Valentin, Ursule-Dufait Cindy, de la Grange Pierre, Letourneur Franck, Raynaud Marc, Couderau Clément, Mezine Fariza, Dagobert Jessie, Bestard Oriol, Moreso Francesc, Villard Jean, Halleck Fabian, Giral Magali, Brouard Sophie, Danger Richard, Gourraud Pierre-Antoine, Rabant Marion, Couzi Lionel, Le Quintrec Moglie, Kamar Nassim, Morelon Emmanuel, Vrtovsnik François, Taupin Jean-Luc, Snanoudj Renaud, Legendre Christophe, Anglicheau Dany, Budde Klemens, Lefaucheur Carmen, Loupy Alexandre, Aubert Olivier

机构信息

Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France.

GenoSplice, Paris, France.

出版信息

Transplantation. 2025 May 1;109(5):871-880. doi: 10.1097/TP.0000000000005181. Epub 2024 Oct 23.

Abstract

BACKGROUND

In kidney transplantation, molecular diagnostics may be a valuable approach to improve the precision of the diagnosis. Using next-generation sequencing (NGS), we aimed to identify clinically relevant archetypes.

METHODS

We conducted an Illumina bulk RNA sequencing on 770 kidney biopsies (540 kidney recipients) collected between 2006 and 2021 from 11 European centers. Differentially expressed genes were determined for 11 Banff lesions. An ElasticNet model was used for feature selection, and 4 machine learning classifiers were trained to predict the probability of presence of the lesions. NGS-based classifiers were used in an unsupervised archetypal analysis to different archetypes. The association of the archetypes with allograft survival was assessed using the iBox risk prediction score.

RESULTS

The ElasticNet feature selection reduced the number of the genes from a range of 859-10 830 to a range of 52-867 genes. NGS-based classifiers demonstrated robust performances (precision-recall area under the curves 0.708-0.980) in predicting the Banff lesions. Archetypal analysis revealed 8 distinct phenotypes, each characterized by distinct clinical, immunological, and histological features. Although the archetypes confirmed the well-defined Banff rejection phenotypes for T cell-mediated rejection and antibody-mediated rejection, equivocal histologic antibody-mediated rejection, and borderline diagnoses were reclassified into different archetypes based on their molecular signatures. The 8 NGS-based archetypes displayed distinct allograft survival profiles with incremental graft loss rates between archetypes, ranging from 90% to 56% rates 7 y after evaluation ( P < 0.0001).

CONCLUSIONS

Using molecular phenotyping, 8 archetypes were identified. These NGS-based archetypes might improve disease characterization, reclassify ambiguous Banff diagnoses, and enable patient-specific risk stratification.

摘要

背景

在肾移植中,分子诊断可能是提高诊断准确性的一种有价值的方法。我们旨在通过下一代测序(NGS)识别临床相关的原型。

方法

我们对2006年至2021年间从11个欧洲中心收集的770份肾活检样本(540名肾移植受者)进行了Illumina批量RNA测序。确定了11种班夫病变的差异表达基因。使用弹性网络模型进行特征选择,并训练4种机器学习分类器来预测病变存在的概率。基于NGS的分类器用于对不同原型进行无监督的原型分析。使用iBox风险预测评分评估原型与移植肾存活的相关性。

结果

弹性网络特征选择将基因数量从859 - 10830个减少到52 - 867个。基于NGS的分类器在预测班夫病变方面表现出强大的性能(曲线下精确召回面积为0.708 - 0.980)。原型分析揭示了8种不同的表型,每种表型都具有独特的临床、免疫和组织学特征。尽管这些原型证实了明确的T细胞介导排斥反应、抗体介导排斥反应、可疑组织学抗体介导排斥反应的班夫排斥反应表型,但边缘诊断根据其分子特征被重新分类为不同的原型。这8种基于NGS的原型显示出不同的移植肾存活情况,各原型之间的移植肾丢失率逐渐增加,评估后7年的丢失率从90%到56%不等(P < 0.0001)。

结论

通过分子表型分析,识别出了8种原型。这些基于NGS的原型可能会改善疾病特征描述,重新分类模糊的班夫诊断,并实现患者特异性风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验