Li Ning, Webb Amy, Kennelly James, Sharma Roshan, Whitson Bryan A, Mohler Peter J, Hummel John D, Zhao Jichao, Fedorov Vadim V
Department of Physiology and Cell Biology (N.L., P.J.M., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus.
Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute (N.L., P.J.M., J.D.H., V.V.F.), The Ohio State University College of Medicine Wexner Medical Center, Columbus.
Circ Arrhythm Electrophysiol. 2025 May;18(5):e013534. doi: 10.1161/CIRCEP.124.013534. Epub 2025 Apr 23.
Despite over a century of clinical electrocardiographic studies showing that women exhibit a faster resting heart rate (HR), the mechanisms underlying sex differences in HR remain unresolved. Moreover, inappropriate sinus tachycardia primarily affects women, whereas men are at a higher risk for conduction block and atrial fibrillation. We hypothesized that the sexual dimorphism of genes responsible for sinoatrial node (SAN) pacemaking and signaling pathways may contribute to the sex differences in HR and susceptibility to arrhythmias.
Human SAN central pacemaker and right atrial tissue were isolated from nondiseased ex vivo donor hearts. Gene expressions were quantified and validated using the transcriptomic panel and quantitative polymerase chain reaction. Gene set enrichment analysis, Ingenuity Pathway Analysis, and human-specific SAN models were utilized to define regulatory mechanisms and functional impacts of sex-biased gene transcription.
We identified differentially expressed region- and sex-specific genes, with gene sets enriched in HR regulation (eg, , ) and metabolism (eg, , ) pathways in female SAN. In contrast, differential genes and gene sets involved in collagen biosynthetic processes, fibrogenesis (eg, ), and immune response (eg, , ) pathways were enriched in males SAN and right atrial. Ingenuity Pathway Analysis predicted significant roles for and estradiol in the sex-specific expression of genes involved in SAN function. Computational simulations showed that the sex-specific SAN differences in I (pacemaker current; ) and I(L-type calcium current; ) can explain the faster HR in female SAN, with female SAN having a lower threshold for inappropriate sinus tachycardia, whereas male SAN are more vulnerable to sinus arrest.
The human SAN exhibits region-specific sexual dimorphism in pacemaking gene sets. Higher expression of and in female SAN may underlie faster HR and increased susceptibility to inappropriate sinus tachycardia in women, whereas enriched gene sets related to inflammation and collagen biosynthesis in men may predispose them to conduction impairments and atrial fibrillation risk.
尽管经过一个多世纪的临床心电图研究表明女性静息心率(HR)更快,但心率性别差异的潜在机制仍未解决。此外,不适当窦性心动过速主要影响女性,而男性发生传导阻滞和心房颤动的风险更高。我们假设负责窦房结(SAN)起搏和信号通路的基因的性别二态性可能导致心率的性别差异以及心律失常易感性的差异。
从非患病的离体供体心脏中分离出人SAN中央起搏器和右心房组织。使用转录组面板和定量聚合酶链反应对基因表达进行定量和验证。利用基因集富集分析、 Ingenuity通路分析和人类特异性SAN模型来定义性别偏向基因转录的调控机制和功能影响。
我们鉴定出差异表达的区域特异性和性别特异性基因,女性SAN中富含心率调节(如, , )和代谢(如, , )途径的基因集。相比之下,参与胶原生物合成过程、纤维生成(如, )和免疫反应(如, , )途径的差异基因和基因集在男性SAN和右心房中富集。 Ingenuity通路分析预测 和雌二醇在参与SAN功能的基因的性别特异性表达中起重要作用。计算模拟表明,女性SAN和男性SAN在I(起搏电流; )和I(L型钙电流; )方面的性别特异性差异可以解释女性SAN心率更快的现象,女性SAN发生不适当窦性心动过速的阈值较低,而男性SAN更容易发生窦性停搏。
人类SAN在起搏基因集中表现出区域特异性的性别二态性。女性SAN中 和 的高表达可能是女性心率更快以及对不适当窦性心动过速易感性增加的基础,而男性中与炎症和胶原生物合成相关的富集基因集可能使他们易患传导障碍和心房颤动风险。