Suppr超能文献

开发一个多变量预测模型,以支持在成人抑郁症的五种主要经验支持治疗方法中进行个性化选择。一项系统评价和个体参与者数据网络荟萃分析的研究方案。

Developing a multivariable prediction model to support personalized selection among five major empirically-supported treatments for adult depression. Study protocol of a systematic review and individual participant data network meta-analysis.

作者信息

Driessen Ellen, Efthimiou Orestis, Wienicke Frederik J, Breunese Jasmijn, Cuijpers Pim, Debray Thomas P A, Fisher David J, Fokkema Marjolein, Furukawa Toshiaki A, Hollon Steven D, Mehta Anuj H P, Riley Richard D, Schmidt Madison R, Twisk Jos W R, Cohen Zachary D

机构信息

Department of Clinical Psychology, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands.

Depression Expertise Center, Pro Persona Mental Health Care, Nijmegen, Netherlands.

出版信息

PLoS One. 2025 Apr 23;20(4):e0322124. doi: 10.1371/journal.pone.0322124. eCollection 2025.

Abstract

BACKGROUND

Various treatments are recommended as first-line options in practice guidelines for depression, but it is unclear which is most efficacious for a given person. Accurate individualized predictions of relative treatment effects are needed to optimize treatment recommendations for depression and reduce this disorder's vast personal and societal costs.

AIMS

We describe the protocol for a systematic review and individual participant data (IPD) network meta-analysis (NMA) to inform personalized treatment selection among five major empirically-supported depression treatments.

METHOD

We will use the METASPY database to identify randomized clinical trials that compare two or more of five treatments for adult depression: antidepressant medication, cognitive therapy, behavioral activation, interpersonal psychotherapy, and psychodynamic therapy. We will request IPD from identified studies. We will conduct an IPD-NMA and develop a multivariable prediction model that estimates individualized relative treatment effects from demographic, clinical, and psychological participant characteristics. Depressive symptom level at treatment completion will constitute the primary outcome. We will evaluate this model using a range of measures for discrimination and calibration, and examine its potential generalizability using internal-external cross-validation.

CONCLUSIONS

We describe a state-of-the-art method to predict personalized treatment effects based on IPD from multiple trials. The resulting prediction model will need prospective evaluation in mental health care for its potential to inform shared decision-making. This study will result in a unique database of IPD from randomized clinical trials around the world covering five widely used depression treatments, available for future research.

摘要

背景

在抑郁症实践指南中,各种治疗方法被推荐为一线选择,但对于特定个体哪种方法最有效尚不清楚。需要准确的个体化相对治疗效果预测,以优化抑郁症的治疗建议,并降低这种疾病给个人和社会带来的巨大成本。

目的

我们描述了一项系统评价和个体参与者数据(IPD)网络荟萃分析(NMA)的方案,以指导在五种主要的经实证支持的抑郁症治疗方法中进行个性化治疗选择。

方法

我们将使用METASPY数据库识别比较成人抑郁症五种治疗方法中两种或更多种的随机临床试验:抗抑郁药物、认知疗法、行为激活、人际心理治疗和心理动力疗法。我们将向已识别的研究索取IPD。我们将进行IPD-NMA并开发一个多变量预测模型,该模型根据参与者的人口统计学、临床和心理特征估计个体化相对治疗效果。治疗结束时的抑郁症状水平将作为主要结局。我们将使用一系列区分度和校准度测量方法评估该模型,并使用内部-外部交叉验证检查其潜在的可推广性。

结论

我们描述了一种基于多项试验的IPD预测个性化治疗效果的先进方法。由此产生的预测模型需要在精神卫生保健中进行前瞻性评估,以了解其为共同决策提供信息的潜力。这项研究将产生一个独特的IPD数据库,该数据库来自世界各地的随机临床试验,涵盖五种广泛使用的抑郁症治疗方法,可供未来研究使用。

相似文献

3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5
Psychological therapies for treatment-resistant depression in adults.
Cochrane Database Syst Rev. 2018 May 14;5(5):CD010558. doi: 10.1002/14651858.CD010558.pub2.

本文引用的文献

1
Implementing precision methods in personalizing psychological therapies: Barriers and possible ways forward.
Behav Res Ther. 2024 Jan;172:104443. doi: 10.1016/j.brat.2023.104443. Epub 2023 Dec 1.
3
Psychological treatment of depression: A systematic overview of a 'Meta-Analytic Research Domain'.
J Affect Disord. 2023 Aug 15;335:141-151. doi: 10.1016/j.jad.2023.05.011. Epub 2023 May 11.
4
Efficacy of personalized psychological interventions: A systematic review and meta-analysis.
J Consult Clin Psychol. 2023 Jul;91(7):389-397. doi: 10.1037/ccp0000820. Epub 2023 May 11.
6
Measuring the performance of prediction models to personalize treatment choice.
Stat Med. 2023 Apr 15;42(8):1188-1206. doi: 10.1002/sim.9665. Epub 2023 Jan 26.
8
Using individual participant data to improve network meta-analysis projects.
BMJ Evid Based Med. 2023 Jun;28(3):197-203. doi: 10.1136/bmjebm-2022-111931. Epub 2022 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验