Suppr超能文献

利用无人机高光谱数据检测松树蛀干害虫对云南松的蛀干危害

Detection of the stem-boring damage by pine shoot beetle ( spp.) to Yunan pine ( Franch.) using UAV hyperspectral data.

作者信息

Liu Meng-Ying, Li Guang-Yun, Shi Lei, Li Ya-Ying, Liu Huai

机构信息

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China.

Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China.

出版信息

Front Plant Sci. 2025 Apr 9;16:1514580. doi: 10.3389/fpls.2025.1514580. eCollection 2025.

Abstract

INTRODUCTION

The stem-boring damage caused by pine shoot beetle (PSB, spp.) cuts off the transmission of water and nutrients. The aggregation of beetles during the stem-boring stage results in the rapid mortality of Yunnan pines ( Franch.). Timely identification and precise localization of stem-boring damage caused by PSB are crucial for removing infected wood and preventing further spread of the infestation. Unmanned airborne vehicle (UAV) hyperspectral data demonstrate great potential in assessing pest outbreaks in forested landscapes. However, there is a lack of studies investigating the application and accuracy of UAV hyperspectral data for detecting PSB stem-boring damage.

METHODS

In this study, we compared the differences in spectral features of healthy pines (H level), three levels of shoot-feeding damage (E, M and S levels), and the stem-boring damage (T level), and then used the Random Forest (RF) algorithm for detecting stem-boring damage by PSB.

RESULTS

The specific canopy spectral features, including red edge (such as Dr, SDr, and D711), blue edge (such as Db and SDb), and chlorophyll-related spectral indices (e.g., MCARI) were sensitive to PSB stem-boring damage. The results of RF models showed that the spectral features of first-order derivative (FD) and spectral indices (SIs) played an important role in the PSB stem-boring damage detection. Models incorporating FD bands, SIs and a combination of all variables proved more effective in detecting PSB stem-boring damage.

DISCUSSION

These findings demonstrate the potential of canopy spectral features in detecting PSB stem-boring damage, which significantly contributed to the prevention and management of PSB infestations.

摘要

引言

松材线虫(PSB, spp.)造成的蛀干危害切断了水分和养分的传输。蛀干阶段甲虫的聚集导致云南松(Franch.)迅速死亡。及时识别和精确定位松材线虫造成的蛀干危害对于清除受感染木材和防止虫害进一步扩散至关重要。无人机高光谱数据在评估森林景观中的害虫爆发方面显示出巨大潜力。然而,缺乏关于无人机高光谱数据用于检测松材线虫蛀干危害的应用和准确性的研究。

方法

在本研究中,我们比较了健康松树(H级)、三个取食嫩梢危害级别(E、M和S级)以及蛀干危害(T级)的光谱特征差异,然后使用随机森林(RF)算法检测松材线虫的蛀干危害。

结果

特定的冠层光谱特征,包括红边(如Dr、SDr和D711)、蓝边(如Db和SDb)以及叶绿素相关光谱指数(如MCARI)对松材线虫蛀干危害敏感。RF模型的结果表明,一阶导数(FD)光谱特征和光谱指数(SIs)在松材线虫蛀干危害检测中发挥了重要作用。结合FD波段、SIs以及所有变量组合的模型在检测松材线虫蛀干危害方面更有效。

讨论

这些发现证明了冠层光谱特征在检测松材线虫蛀干危害方面的潜力,这对松材线虫虫害的预防和管理具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9069/12014753/7204620301ce/fpls-16-1514580-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验