Lin Huawei, Yin Lianhua, Liu Weilin, Li Rui, Jiang Tao, Yang Minguang, Cao Yajun, Wang Sinuo, Yu Yan, Chen Cong, Guo Xiaoqin, Wang Wenju, Liu Huanhuan, Dai Yaling, Yan Jiamin, Lin Yanting, Ding Yanyi, Ruan Chendong, Yang Lei, Wu Tiecheng, Tao Jing, Chen Lidian
College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
Adv Sci (Weinh). 2025 Jul;12(27):e2410209. doi: 10.1002/advs.202410209. Epub 2025 Apr 24.
Physical exercise protects against cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, the mechanisms through which exercise sends signals from the periphery to the central nervous system remain incompletely understood. This study demonstrated that exercise promotes the secretion of muscle-derived small extracellular vesicles (sEVs), which facilitate interorgan communication between the muscle and the brain. Systematic delivery of muscle-derived sEVs enhances synaptic plasticity and alleviated cognitive impairment in CCH. Notably, miRNA sequencing reveal miR-17/20a-5p as key cargos in sEVs involved in the exercise-induced muscle-brain crosstalk. Muscle-derived sEVs are also identified as the primary source of swimming-induced miR-17/20a-5p in circulating sEVs. Mechanistically, miR-17/20a-5p binds to the DEP-domain containing mTOR-interacting protein (DEPTOR) and activates the mammalian target of rapamycin (mTOR) pathway in the hippocampus. Depletion of miR-17/20a-5p from muscle-derived sEVs impairs the exercise-induced enhancement of synaptic plasticity and cognitive function. Moreover, overexpression of DEPTOR in the hippocampus attenuates the cognitive benefits of exercise. Conversely, hippocampus-specific activation of mTOR reverses these effects, highlighting the crucial role of mTOR in mediating the positive effects of exercise. Collectively, these findings identify miR-17/20a-5p in muscle-derived sEVs as the exercise-induced myokine with potent effects on the brain, emphasizing the therapeutic potential of exercise in managing cognitive impairment.
体育锻炼可预防慢性脑灌注不足(CCH)引起的认知障碍。然而,运动从外周向中枢神经系统发送信号的机制仍未完全明确。本研究表明,运动促进肌肉衍生的小细胞外囊泡(sEVs)的分泌,其有助于肌肉与大脑之间的器官间通讯。系统性递送肌肉衍生的sEVs可增强突触可塑性并减轻CCH中的认知障碍。值得注意的是,miRNA测序显示miR-17/20a-5p是参与运动诱导的肌肉-脑串扰的sEVs中的关键货物。肌肉衍生的sEVs也被确定为循环sEVs中游泳诱导的miR-17/20a-5p的主要来源。机制上,miR-17/20a-5p与含DEP结构域的mTOR相互作用蛋白(DEPTOR)结合并激活海马体中的雷帕霉素哺乳动物靶标(mTOR)通路。从肌肉衍生的sEVs中去除miR-17/20a-5p会损害运动诱导的突触可塑性和认知功能增强。此外,海马体中DEPTOR的过表达会减弱运动的认知益处。相反,海马体特异性激活mTOR可逆转这些作用,突出了mTOR在介导运动积极作用中的关键作用。总之,这些发现确定肌肉衍生的sEVs中的miR-17/20a-5p为运动诱导的对大脑有强大作用的肌动蛋白,强调了运动在管理认知障碍方面的治疗潜力。
Acta Neuropathol Commun. 2025-7-9
J Pharmacol Exp Ther. 2025-4
Cell Metab. 2023-7-11
Nat Rev Mol Cell Biol. 2023-7