文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肌肉来源的小细胞外囊泡介导慢性脑灌注不足中运动诱导的认知保护作用。

Muscle-Derived Small Extracellular Vesicles Mediate Exercise-Induced Cognitive Protection in Chronic Cerebral Hypoperfusion.

作者信息

Lin Huawei, Yin Lianhua, Liu Weilin, Li Rui, Jiang Tao, Yang Minguang, Cao Yajun, Wang Sinuo, Yu Yan, Chen Cong, Guo Xiaoqin, Wang Wenju, Liu Huanhuan, Dai Yaling, Yan Jiamin, Lin Yanting, Ding Yanyi, Ruan Chendong, Yang Lei, Wu Tiecheng, Tao Jing, Chen Lidian

机构信息

College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.

The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.

出版信息

Adv Sci (Weinh). 2025 Jul;12(27):e2410209. doi: 10.1002/advs.202410209. Epub 2025 Apr 24.


DOI:10.1002/advs.202410209
PMID:40271743
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12279231/
Abstract

Physical exercise protects against cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, the mechanisms through which exercise sends signals from the periphery to the central nervous system remain incompletely understood. This study demonstrated that exercise promotes the secretion of muscle-derived small extracellular vesicles (sEVs), which facilitate interorgan communication between the muscle and the brain. Systematic delivery of muscle-derived sEVs enhances synaptic plasticity and alleviated cognitive impairment in CCH. Notably, miRNA sequencing reveal miR-17/20a-5p as key cargos in sEVs involved in the exercise-induced muscle-brain crosstalk. Muscle-derived sEVs are also identified as the primary source of swimming-induced miR-17/20a-5p in circulating sEVs. Mechanistically, miR-17/20a-5p binds to the DEP-domain containing mTOR-interacting protein (DEPTOR) and activates the mammalian target of rapamycin (mTOR) pathway in the hippocampus. Depletion of miR-17/20a-5p from muscle-derived sEVs impairs the exercise-induced enhancement of synaptic plasticity and cognitive function. Moreover, overexpression of DEPTOR in the hippocampus attenuates the cognitive benefits of exercise. Conversely, hippocampus-specific activation of mTOR reverses these effects, highlighting the crucial role of mTOR in mediating the positive effects of exercise. Collectively, these findings identify miR-17/20a-5p in muscle-derived sEVs as the exercise-induced myokine with potent effects on the brain, emphasizing the therapeutic potential of exercise in managing cognitive impairment.

摘要

体育锻炼可预防慢性脑灌注不足(CCH)引起的认知障碍。然而,运动从外周向中枢神经系统发送信号的机制仍未完全明确。本研究表明,运动促进肌肉衍生的小细胞外囊泡(sEVs)的分泌,其有助于肌肉与大脑之间的器官间通讯。系统性递送肌肉衍生的sEVs可增强突触可塑性并减轻CCH中的认知障碍。值得注意的是,miRNA测序显示miR-17/20a-5p是参与运动诱导的肌肉-脑串扰的sEVs中的关键货物。肌肉衍生的sEVs也被确定为循环sEVs中游泳诱导的miR-17/20a-5p的主要来源。机制上,miR-17/20a-5p与含DEP结构域的mTOR相互作用蛋白(DEPTOR)结合并激活海马体中的雷帕霉素哺乳动物靶标(mTOR)通路。从肌肉衍生的sEVs中去除miR-17/20a-5p会损害运动诱导的突触可塑性和认知功能增强。此外,海马体中DEPTOR的过表达会减弱运动的认知益处。相反,海马体特异性激活mTOR可逆转这些作用,突出了mTOR在介导运动积极作用中的关键作用。总之,这些发现确定肌肉衍生的sEVs中的miR-17/20a-5p为运动诱导的对大脑有强大作用的肌动蛋白,强调了运动在管理认知障碍方面的治疗潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/a7cbc84de8d7/ADVS-12-2410209-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/628c4b0cf110/ADVS-12-2410209-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/b65dc8037f8f/ADVS-12-2410209-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/694fa96228c1/ADVS-12-2410209-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/cd70342baaab/ADVS-12-2410209-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/d34d37b356fd/ADVS-12-2410209-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/d2e44706758c/ADVS-12-2410209-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/af51b4e8d9fd/ADVS-12-2410209-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/80d4f59ada65/ADVS-12-2410209-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/ef52743a96dc/ADVS-12-2410209-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/a7cbc84de8d7/ADVS-12-2410209-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/628c4b0cf110/ADVS-12-2410209-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/b65dc8037f8f/ADVS-12-2410209-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/694fa96228c1/ADVS-12-2410209-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/cd70342baaab/ADVS-12-2410209-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/d34d37b356fd/ADVS-12-2410209-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/d2e44706758c/ADVS-12-2410209-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/af51b4e8d9fd/ADVS-12-2410209-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/80d4f59ada65/ADVS-12-2410209-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/ef52743a96dc/ADVS-12-2410209-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ca/12279231/a7cbc84de8d7/ADVS-12-2410209-g011.jpg

相似文献

[1]
Muscle-Derived Small Extracellular Vesicles Mediate Exercise-Induced Cognitive Protection in Chronic Cerebral Hypoperfusion.

Adv Sci (Weinh). 2025-7

[2]
Muscle-specific miR-499-5p delivered by small extracellular vesicles impairs endothelial function and ischemic hindlimb recovery in diabetic mice.

Cardiovasc Diabetol. 2025-7-10

[3]
Exercise-induced irisin ameliorates cognitive impairment following chronic cerebral hypoperfusion by suppressing neuroinflammation and hippocampal neuronal apoptosis.

J Neuroinflammation. 2025-6-28

[4]
NSC-derived extracellular vesicles-mediates neuronal plasticity enhancement in vascular dementia via transferring miR-210.

Acta Neuropathol Commun. 2025-7-9

[5]
Tonsil-Derived Mesenchymal Stem Cell-Derived Small Extracellular Vesicles (sEVs) Restore Myo-Inositol Production in LPS-Treated Skeletal Muscle.

Tissue Eng Regen Med. 2025-4

[6]
Visceral adipose tissue-derived extracellular vesicles promote stress susceptibility in obese mice via miR-140-5p.

Acta Pharmacol Sin. 2025-5

[7]
Morphine-induced hyperalgesia impacts small extracellular vesicle microRNA composition and function.

J Pharmacol Exp Ther. 2025-4

[8]
MiR-125a-5p in extracellular vesicles of neural stem cells acts as a crosstalk signal modulating neuroinflammatory microenvironment to alleviate cerebral ischemia-reperfusion injury.

Theranostics. 2025-6-12

[9]
Chronic sleep deprivation induces plasma exosome-derived miR-150-5p downregulation as a novel mechanism involved in Parkinson's disease progression by targeting DCLK1.

J Transl Med. 2025-7-11

[10]
miR-210 Regulates Autophagy Through the AMPK/mTOR Signaling Pathway, Reduces Neuronal Cell Death and Inflammatory Responses, and Enhances Functional Recovery Following Cerebral Hemorrhage in Mice.

Neurochem Res. 2025-6-5

本文引用的文献

[1]
A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles.

J Extracell Vesicles. 2024-8

[2]
The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases.

Front Mol Neurosci. 2024-1-5

[3]
Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk.

Cell Metab. 2023-11-7

[4]
Effects of exercise interventions on cognitive functions in healthy populations: A systematic review and meta-analysis.

Ageing Res Rev. 2023-12

[5]
UBE2M-mediated neddylation of TRIM21 regulates obesity-induced inflammation and metabolic disorders.

Cell Metab. 2023-8-8

[6]
ARG1-expressing microglia show a distinct molecular signature and modulate postnatal development and function of the mouse brain.

Nat Neurosci. 2023-6

[7]
Organism-wide, cell-type-specific secretome mapping of exercise training in mice.

Cell Metab. 2023-7-11

[8]
Engineered Extracellular Vesicles Derived from Dermal Fibroblasts Attenuate Inflammation in a Murine Model of Acute Lung Injury.

Adv Mater. 2023-7

[9]
Young Exosome Bio-Nanoparticles Restore Aging-Impaired Tendon Stem/Progenitor Cell Function and Reparative Capacity.

Adv Mater. 2023-5

[10]
Context-specific regulation of extracellular vesicle biogenesis and cargo selection.

Nat Rev Mol Cell Biol. 2023-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索