Yu Ching-Feng, Liu Yang-Lun
Department of Mechanical Engineering, National United University, Miaoli 360303, Taiwan.
Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan.
Materials (Basel). 2025 Mar 29;18(7):1561. doi: 10.3390/ma18071561.
This study systematically explores the structural stability, mechanical properties, elastic anisotropy, fracture toughness, and thermophysical characteristics of AuIn and AuIn intermetallic compounds (IMCs) through density functional theory (DFT) simulations. Employing the generalized gradient approximation (GGA) and the Voigt-Reuss-Hill approximation enables precise predictions of polycrystalline elastic behavior, providing critical insights into the intrinsic stability and mechanical anisotropy of these IMCs. Structural optimization identifies the equilibrium lattice parameters and cohesive energies, indicating stronger atomic bonding and superior structural stability in AuIn relative to AuIn. Elastic constant calculations confirm mechanical stability and reveal pronounced anisotropic elastic behavior; AuIn exhibits significant stiffness along the [010] crystallographic direction, while AuIn demonstrates notable stiffness predominantly along the [001] direction. Both AuIn and AuIn exhibit ductile characteristics, confirmed by positive Cauchy pressures and elevated bulk-to-shear modulus (/) ratios. Fracture toughness analysis further establishes that AuIn offers greater resistance to crack propagation compared to AuIn, suggesting its suitability in mechanically demanding applications. Thermophysical property evaluations demonstrate that AuIn possesses higher thermal conductivity, elevated Debye temperature, and superior volumetric heat capacity relative to AuIn, reflecting its enhanced capability for effective thermal management in electronic packaging. Anisotropy assessments, utilizing both universal and Zener anisotropy indices, reveal significantly higher mechanical anisotropy in AuIn, influencing its practical applicability.
本研究通过密度泛函理论(DFT)模拟系统地探究了AuIn和AuIn金属间化合物(IMC)的结构稳定性、力学性能、弹性各向异性、断裂韧性和热物理特性。采用广义梯度近似(GGA)和Voigt-Reuss-Hill近似能够精确预测多晶弹性行为,为这些IMC的内在稳定性和力学各向异性提供关键见解。结构优化确定了平衡晶格参数和内聚能,表明AuIn相对于AuIn具有更强的原子键合和更高的结构稳定性。弹性常数计算证实了力学稳定性,并揭示了明显的各向异性弹性行为;AuIn在[010]晶向表现出显著的刚度,而AuIn主要在[001]方向表现出显著的刚度。AuIn和AuIn均表现出韧性特征,正的柯西压力和升高的体剪切模量(/)比证实了这一点。断裂韧性分析进一步表明,与AuIn相比,AuIn对裂纹扩展具有更大的抵抗力,表明其适用于对机械性能要求较高的应用。热物理性能评估表明,相对于AuIn,AuIn具有更高的热导率、更高的德拜温度和更好的体积热容,反映了其在电子封装中有效热管理的增强能力。利用通用和齐纳各向异性指数进行的各向异性评估表明,AuIn的机械各向异性明显更高,这影响了其实际适用性。