Gutiérrez Jonatan, Pérez Juan F
Grupo de Manejo Eficiente de la Energía-GIMEL, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, 050010 Medellín, Colombia.
Materials (Basel). 2025 Apr 3;18(7):1634. doi: 10.3390/ma18071634.
The fallen leaf has the potential to be energy-valorized in cities with sustainability goals. Thermochemical characterization of garden waste through pyrolysis and combustion kinetics will establish the reactivity of this lignocellulosic biomass as biofuel for thermochemical conversion processes for energy recovery. Herein, the thermal degradation of two types of pellets produced from fallen leaf (pellets without glycerol PG0, and pellets with 5 wt% glycerol PG5) are characterized under inert and oxidative atmospheres using three different approaches: thermogravimetry (TG) and differential thermogravimetry (DTG) analyses, TG-based reactivity, and reaction kinetics from three model-free isoconversional methods. The model-free isoconversional methods are Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Friedman, which were applied for estimating the kinetic parameters, activation energy (Eα) and pre-exponential factor, using different heating rates (20, 30, and 40 °C/min) to ensure reliable data interpretation. The pyrolysis results showed that PG5 was more reactive compared to PG0 because the addition of glycerol during the pelletizing process increased the volatile matter and oxygen content in PG5. Likewise, the higher reactivity of PG5 under pyrolysis was determined by average activation energy (Eα) with an average value of 96.82 kJ/mol compared to 106.46 kJ/mol for PG0. During the combustion process, Eα was 90.70 kJ/mol and 90.29 kJ/mol for PG0 and PG5, respectively. Finally, both materials exhibited higher reactivity under an oxidative atmosphere. Therefore, according to our results, the pellets produced from leaf litter can be used as biofuels for thermochemical processes, highlighting that using glycerol as a binder favors the reactivity of the densified garden waste.
在具有可持续发展目标的城市中,落叶具有能源价值提升的潜力。通过热解和燃烧动力学对园林废弃物进行热化学表征,将确定这种木质纤维素生物质作为热化学转化过程中能源回收的生物燃料的反应活性。在此,使用三种不同方法对由落叶制成的两种类型颗粒(无甘油颗粒PG0和含5 wt%甘油颗粒PG5)在惰性和氧化气氛下的热降解进行表征:热重分析(TG)和微商热重分析(DTG)、基于TG的反应活性以及三种无模型等转化率方法的反应动力学。无模型等转化率方法包括Flynn-Wall-Ozawa(FWO)法、Kissinger-Akahira-Sunose(KAS)法和Friedman法,使用不同加热速率(20、30和40℃/分钟)来应用这些方法估计动力学参数、活化能(Eα)和指前因子,以确保可靠的数据解释。热解结果表明,与PG0相比,PG5的反应活性更高,因为在制粒过程中添加甘油增加了PG5中的挥发物和氧含量。同样,PG5在热解过程中较高的反应活性由平均活化能(Eα)决定,其平均值为96.82 kJ/mol,而PG0为106.46 kJ/mol。在燃烧过程中,PG0和PG5的Eα分别为90.70 kJ/mol和90.29 kJ/mol。最后,两种材料在氧化气氛下均表现出较高的反应活性。因此,根据我们的结果,落叶制成的颗粒可作为热化学过程的生物燃料,突出了使用甘油作为粘结剂有利于压实园林废弃物的反应活性。