Yokawa Kenta, Higashihara Tomoya
Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
Macromol Rapid Commun. 2025 Aug;46(16):e2500254. doi: 10.1002/marc.202500254. Epub 2025 Apr 24.
High-molar-mass π-conjugated polymers (CPs) are essential for semiconductor applications. However, conventional step-growth cross-coupling polymerizations generally require strict monomer stoichiometry according to the Carothers/Flory theory. Herein, an environmentally benign nonstoichiometric direct arylation polymerization (DArP) is reported that efficiently affords high-molar-mass CPs without employing metal-containing monomers or silver salts. Specifically, 3,4-ethylenedioxythiophene is polymerized using up to a 3-fold excess of 4,9-dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]-phenanthroline-1,3,6,8-tetraone in the presence of catalytic Pd(dba)/(4-dimethylaminophenyl)di-tert-butylphosphine (AmPhos), affording polymers with number-average molar masses far exceeding the theoretical values predicted using the Carothers/Flory equation. Model reactions involving 2,3-dihydrothieno[3,4-b][1,4]dioxine-5-carbonitrile and 4,9-dibromo-2,7-bis(2-hexyl)benzo[lmn][3,8]-phenanthroline-1,3,6,8-tetraone indicate that the electron-rich AmPhos ligand promotes intramolecular Pd catalyst transfer ("ring-walking"), enabling high polymerization efficiency even under nonstoichiometric conditions. The resulting polymers exhibit negligible structural defects and good solubility in common organic solvents, suggesting regioselective polymerization with minimal side reactions. The proposed nonstoichiometric DArP approach may offer advantages such as reduced polymerization times by using excess monomers that are readily accessible to high-performance semiconducting polymers.
高分子量π共轭聚合物(CPs)对于半导体应用至关重要。然而,根据卡罗瑟斯/弗洛里理论,传统的逐步增长交叉偶联聚合通常需要严格的单体化学计量比。在此,报道了一种环境友好的非化学计量直接芳基化聚合(DArP),该方法无需使用含金属单体或银盐就能高效合成高分子量CPs。具体而言,在催化量的Pd(dba)/(4-二甲基氨基苯基)二叔丁基膦(AmPhos)存在下,使用高达3倍过量的4,9-二溴-2,7-双(2-癸基十四烷基)苯并[lmn][3,8]-菲咯啉-1,3,6,8-四酮使3,4-亚乙基二氧噻吩聚合,得到的聚合物数均摩尔质量远远超过使用卡罗瑟斯/弗洛里方程预测的理论值。涉及2,3-二氢噻吩并[3,4-b][1,4]二恶英-5-腈和4,9-二溴-2,7-双(2-己基)苯并[lmn][3,8]-菲咯啉-1,3,6,8-四酮的模型反应表明,富电子的AmPhos配体促进分子内钯催化剂转移(“环行走”),即使在非化学计量条件下也能实现高聚合效率。所得聚合物的结构缺陷可忽略不计,且在常见有机溶剂中具有良好的溶解性,表明聚合具有区域选择性且副反应最少。所提出的非化学计量DArP方法可能具有一些优势,例如通过使用高性能半导体聚合物易于获得的过量单体来缩短聚合时间。