Sánchez Díaz Eduardo, Osegueda Brayan, Minakhina Svetlana, Starks Nickolas, Novak Stefanie, Tolkatchev Dmitri, Gregorio Carol C, Kostyukova Alla S, Smith Garry E
Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, WA, USA.
Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
J Gen Physiol. 2025 Jul 7;157(4). doi: 10.1085/jgp.202413641. Epub 2025 Apr 24.
In cardiac muscle, regulation of actin polymerization at the thin filament pointed end is controlled by two structurally similar but functionally antagonistic proteins, leiomodin-2 and tropomodulin-1. Both proteins contain tropomyosin-binding site 1, which is essential for their recruitment to the pointed end. Using circular dichroism, we determined changes in melting temperatures (ΔTm) for complexes of tropomyosin and leiomodin-2 fragments containing several hypomorphic mutations, which moderately affect binding to tropomyosin. We ran molecular dynamics simulations for the complexes and calculated standard Gibbs free energies of binding, which we found to strongly correlate with the ΔTm. We found that the E34Q mutation in leiomodin-2 resulted in a decrease in the melting temperature of the complex of tropomyosin and leiomodin-2 fragments, indicating a decrease in the affinity of leiomodin-2 for tropomyosin. Although modest, this change in in vitro affinity made leiomodin-2 a weaker competitor for tropomyosin than tropomodulin-1 in cardiomyocytes. This mutation significantly reduced the ability of leiomodin-2 to displace tropomodulin-1 at thin filament pointed ends and affected the ability of leiomodin-2 to elongate thin filaments. Our results highlight the essential role of the tropomyosin-binding site in the dynamic equilibrium between tropomodulin-1 and leiomodin-2 at the pointed end of thin filaments. Our data also suggest the potential use of the correlation between ΔTm and the modeled standard Gibbs free energies of binding to predict changes in the stability of complexes between tropomyosin and leiomodin or tropomodulin isoforms.
在心肌中,细肌丝尖端肌动蛋白聚合的调节由两种结构相似但功能拮抗的蛋白质——平滑肌动蛋白调节素-2和原肌球蛋白调节素-1控制。这两种蛋白质都含有原肌球蛋白结合位点1,这对于它们被募集到尖端至关重要。我们使用圆二色性测定了含有几个低功能突变的原肌球蛋白与平滑肌动蛋白调节素-2片段复合物的解链温度变化(ΔTm),这些突变适度影响与原肌球蛋白的结合。我们对复合物进行了分子动力学模拟,并计算了结合的标准吉布斯自由能,发现其与ΔTm密切相关。我们发现平滑肌动蛋白调节素-2中的E34Q突变导致原肌球蛋白与平滑肌动蛋白调节素-2片段复合物的解链温度降低,表明平滑肌动蛋白调节素-2与原肌球蛋白的亲和力下降。尽管这种体外亲和力的变化不大,但使平滑肌动蛋白调节素-2在心肌细胞中成为比原肌球蛋白调节素-1更弱的原肌球蛋白竞争者。该突变显著降低了平滑肌动蛋白调节素-2在细肌丝尖端取代原肌球蛋白调节素-1的能力,并影响了平滑肌动蛋白调节素-2延长细肌丝的能力。我们的结果突出了原肌球蛋白结合位点在细肌丝尖端原肌球蛋白调节素-1和平滑肌动蛋白调节素-2之间动态平衡中的重要作用。我们的数据还表明,ΔTm与模拟的结合标准吉布斯自由能之间的相关性可能用于预测原肌球蛋白与平滑肌动蛋白调节素或原肌球蛋白调节素异构体之间复合物稳定性的变化。