文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过掺入退火预处理的丝纤维和氧化铁纳米颗粒来制备具有成骨生物活性的功能性生物材料。

Preparing the functional biomaterial with osteogenic bioactivities by incorporating annealing pretreated silk fiber and iron oxide nanoparticles.

作者信息

Wang Peng, Wang Hengda, Wang Xucai, Gu Jiayu, Huang Caoxing, Sun Jianfei

机构信息

State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.

出版信息

Front Bioeng Biotechnol. 2025 Apr 10;13:1584081. doi: 10.3389/fbioe.2025.1584081. eCollection 2025.


DOI:10.3389/fbioe.2025.1584081
PMID:40276031
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12018372/
Abstract

Silk fiber (SF), a kind of bio-fiber from biomass protein fibers with biocompatibility and mechanical properties, has been widely utilized in biomedical engineering. However, SF-based bio-scaffolds often encounter challenges in promoting osteogenesis within bone tissue engineering (BTE) applications. In this study, SF-based composites were constructed via the solution casting method in the presence of IONPs (SFF-IONPs), followed by annealing-induced self-assembly to form magnetic SF annealing films (SFF-IONPs). Three types of IONPs loaded SF films (SFF-50, SFF-100, and SFF-200) were prepared by altering the feeding IONPs (50 μg/mL, 100 μg/mL, and 200 μg/mL). Results demonstrated that SFF films primarily exhibited random coil structures and were water-soluble, while SFF films demonstrated the formation of silk II structures and became water-insoluble. The incorporation of IONPs significantly enhanced the porosity, mechanical strength, and thermal stability of the SFF films. Furthermore, the SFF-IONPs films not only exhibited excellent biocompatibility but also demonstrated enhanced osteo-inductive properties, as evidenced by increased alkaline phosphatase (ALP) activity, enhanced mineralized nodule formation, and upregulation of osteogenic gene expression. This study presents a promising bio-based material with significant potential for use as a scaffold in BTE applications.

摘要

丝纤维(SF)是一种具有生物相容性和机械性能的生物质蛋白纤维中的生物纤维,已在生物医学工程中得到广泛应用。然而,基于SF的生物支架在骨组织工程(BTE)应用中促进骨生成方面常常面临挑战。在本研究中,通过溶液浇铸法在离子纳米颗粒(IONPs)存在的情况下构建基于SF的复合材料(SFF-IONPs),随后通过退火诱导自组装形成磁性SF退火膜(SFF-IONPs)。通过改变添加的IONPs(50μg/mL、100μg/mL和200μg/mL)制备了三种负载IONPs的SF膜(SFF-50、SFF-100和SFF-200)。结果表明,SFF膜主要呈现无规卷曲结构且可溶于水,而SFF膜显示出丝II结构的形成且变得不溶于水。IONPs的掺入显著提高了SFF膜的孔隙率、机械强度和热稳定性。此外,SFF-IONPs膜不仅表现出优异的生物相容性,还显示出增强的骨诱导性能,碱性磷酸酶(ALP)活性增加、矿化结节形成增强和成骨基因表达上调证明了这一点。本研究提出了一种有前景的生物基材料,在BTE应用中作为支架具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/5afc68584a1c/fbioe-13-1584081-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/b3f8abb5d34d/fbioe-13-1584081-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/9e1d25f5b748/fbioe-13-1584081-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/789d3e5e7d2b/fbioe-13-1584081-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/70778b4c600e/fbioe-13-1584081-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/758413a84521/fbioe-13-1584081-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/c1f3e796f4dc/fbioe-13-1584081-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/5afc68584a1c/fbioe-13-1584081-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/b3f8abb5d34d/fbioe-13-1584081-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/9e1d25f5b748/fbioe-13-1584081-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/789d3e5e7d2b/fbioe-13-1584081-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/70778b4c600e/fbioe-13-1584081-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/758413a84521/fbioe-13-1584081-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/c1f3e796f4dc/fbioe-13-1584081-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/12018372/5afc68584a1c/fbioe-13-1584081-g007.jpg

相似文献

[1]
Preparing the functional biomaterial with osteogenic bioactivities by incorporating annealing pretreated silk fiber and iron oxide nanoparticles.

Front Bioeng Biotechnol. 2025-4-10

[2]
Osteogenesis of Iron Oxide Nanoparticles-Labeled Human Precartilaginous Stem Cells in Interpenetrating Network Printable Hydrogel.

Front Bioeng Biotechnol. 2022-4-29

[3]
Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering.

Int J Mol Sci. 2019-10-16

[4]
Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells.

Artif Cells Nanomed Biotechnol. 2018-1-21

[5]
Janus silk fibroin/polycaprolactone-based scaffold with directionally aligned fibers and porous structure for bone regeneration.

Int J Biol Macromol. 2024-3

[6]
Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.

Int J Biol Macromol. 2016-1

[7]
Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide.

Int J Nanomedicine. 2019-1-18

[8]
Iron oxide nanoparticles in liquid or powder form enhanced osteogenesis via stem cells on injectable calcium phosphate scaffold.

Nanomedicine. 2019-7-24

[9]
Endowing improved osteogenic activities with collagen membrane by incorporating biocompatible iron oxide nanoparticles.

Front Bioeng Biotechnol. 2023-10-12

[10]
Superparamagnetic core-shell electrospun scaffolds with sustained release of IONPs facilitating and bone regeneration.

J Mater Chem B. 2021-11-10

本文引用的文献

[1]
A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology. 2025-1-16

[2]
Silk fibroin hydrogel adhesive enables sealed-tight reconstruction of meniscus tears.

Nat Commun. 2024-3-26

[3]
Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review.

Int J Biol Macromol. 2024-2

[4]
Harmonizing Thickness and Permeability in Bone Tissue Engineering: A Novel Silk Fibroin Membrane Inspired by Spider Silk Dynamics.

Adv Mater. 2024-3

[5]
Silk fibroin-derived electrospun materials for biomedical applications: A review.

Int J Biol Macromol. 2024-1

[6]
Orthopedic Scaffolds: Evaluation of Structural Strength and Permeability of Fluid Flow via an Open Cell Neovius Structure for Bone Tissue Engineering.

ACS Biomater Sci Eng. 2023-10-9

[7]
Biomedical applications of chitosan/silk fibroin composites: A review.

Int J Biol Macromol. 2023-6-15

[8]
A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering.

Int J Mol Sci. 2023-1-31

[9]
Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel.

Nanoscale. 2023-2-16

[10]
Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury.

Regen Biomater. 2022-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索