Suppr超能文献

利用无线传感器网络中的径向偏差和搜索算法优化能量受限目标定位与跟踪

Optimizing energy constrained target localization and tracking with radial bias and seeker optimization algorithms in wireless sensor networks.

作者信息

Yazhinian S, Famila S, Jose P, A Mahendar, R Sofia

机构信息

Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, India.

CMR Technical Campus, Hyderabad, India.

出版信息

MethodsX. 2025 Mar 31;14:103280. doi: 10.1016/j.mex.2025.103280. eCollection 2025 Jun.

Abstract

The standard localization approach is characterized by a fixed position distribution of the anchor nodes, which cannot be dynamically modified based on the deployment environment. This paper proposes a novel approach combining Radial Bias (RB) with the Seeker Optimization Algorithm (SOA) to address the challenges of energy-constrained target localization and tracking. The RB technique enhances localization accuracy by refining the position estimates of the target, while the SOA optimizes sensor deployment and data transmission paths to minimize energy consumption. By integrating these two methodologies, ensures a balance between precision in tracking and energy efficiency. Extensive simulations shown this technique surpasses existing methods in terms of both accuracy in determining the location and the duration of network operation. This makes it attractive option for applications of energy-constrained WSNs. The investigation examines the outcome of the particle count in the RBSO algorithm, specifically for values of 5, 10, 15, 20, and 25. The simulation results show that the recommended strategy decreases particles, speeds up positioning and tracking, and maintains target localization and tracking accuracy. It is seen that the proposed RadB_SOA achieves 12.4 % of transmission error, 14.6 % of ranging error, 96.3 % of localization coverage, 98.65 % of PDR, and 21.56 % of energy consumption.•The Radial Bias-Seeker Optimization Algorithm (RadB_SOA) suggested enhances the precision in target localization and optimizes energy usage in wireless sensor networks.•Simulation outcomes reveal improved tracking accuracy, minimized transmission and ranging errors, as well as increased localization coverage over current techniques.•The research presents an extensive evaluation of particle count fluctuations in RBSO, demonstrating enhanced positioning speed and precision with network efficiency.

摘要

标准定位方法的特点是锚节点的位置分布固定,无法根据部署环境进行动态修改。本文提出了一种将径向偏差(RB)与搜索者优化算法(SOA)相结合的新方法,以应对能量受限目标定位和跟踪的挑战。RB技术通过细化目标的位置估计来提高定位精度,而SOA则优化传感器部署和数据传输路径以最小化能量消耗。通过整合这两种方法,确保了跟踪精度和能源效率之间的平衡。大量仿真表明,该技术在确定位置的准确性和网络运行持续时间方面均优于现有方法。这使其成为能量受限无线传感器网络应用的有吸引力的选择。该研究考察了RBSO算法中粒子数的结果,具体针对5、10、15、20和25的值。仿真结果表明,推荐的策略减少了粒子数,加快了定位和跟踪速度,并保持了目标定位和跟踪精度。可以看出,所提出的RadB_SOA实现了12.4%的传输误差、14.6%的测距误差、96.3%的定位覆盖、98.65%的分组交付率和21.56%的能量消耗。•所提出的径向偏差-搜索者优化算法(RadB_SOA)提高了目标定位的精度,并优化了无线传感器网络中的能量使用。•仿真结果显示,与当前技术相比,跟踪精度提高,传输和测距误差最小化,定位覆盖增加。•该研究对RBSO中的粒子数波动进行了广泛评估,证明了网络效率提高了定位速度和精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6cf/12018200/161768b8bfd9/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验