Suppr超能文献

通过机器学习预测核素-微生物相互作用的非还原性生物矿化:以铀为例 以及……(原文此处不完整)

Prediction of the Non-Reducing Biomineralization of Nuclide-Microbial Interactions by Machine Learning: The Case of Uranium and .

作者信息

Qiang Shirong, Liu Leijin, Li Siqi, Wang Shuang, Huang Xinyang, Yang Jiaxin, Song Jiayu, Zhang Yue, Huang Yongxiang, Fan Qiaohui

机构信息

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.

School of Stomatology, Lanzhou University, Lanzhou 730000, China.

出版信息

Toxics. 2025 Apr 13;13(4):305. doi: 10.3390/toxics13040305.

Abstract

exhibits a great affinity to soluble U(VI) through non-reducing biomineralization. The pH value, temperature, initial uranium concentration, bacterial concentration, and adsorption time are recognized as the five environmental sensitive factors that can regulate the degree of non-reductive biomineralization. Most of the current studies have focused on the regulatory mechanisms of these factors on uranium non-reductive mineralization. However, there are still few reports on the importance of these factors in influencing non-reductive mineralization, as well as on how to regulate these factors to increase the efficiency of non-reductive mineralization and enhance the enrichment of on uranium. In this work, a deep learning neural network model was constructed to effectively predict the effects of changes in these five environmental sensitivity factors on the non-reducing mineralization of to uranium. Accuracy (99.6%) and R (up to 0.89) confirm a high degree of agreement between the predicted output and the observed values. Sensitivity analysis shows that in this model, pH value is the most important influencing factor. However, under different pH values, temperature, initial uranium concentration, adsorption time, and bacterial concentration have different effects. When the pH value is lower than 6, the most important factor is temperature, and once the pH value is greater than 6, the initial concentration is the most important factor. The results are expected to provide a theoretical basis for regulating the enrichment degree of U(VI) by , achieving the maximum long-term stable fixation of U(VI), and understanding the environmental chemical behavior of uranium under different conditions.

摘要

通过非还原生物矿化对可溶性U(VI)表现出很强的亲和力。pH值、温度、初始铀浓度、细菌浓度和吸附时间被认为是可以调节非还原生物矿化程度的五个环境敏感因素。目前大多数研究集中在这些因素对铀非还原矿化的调控机制上。然而,关于这些因素在影响非还原矿化方面的重要性,以及如何调节这些因素以提高非还原矿化效率和增强对铀的富集,仍然鲜有报道。在这项工作中,构建了一个深度学习神经网络模型,以有效预测这五个环境敏感因素的变化对[具体物质]非还原矿化铀的影响。准确率(99.6%)和R值(高达0.89)证实了预测输出与观测值之间的高度一致性。敏感性分析表明,在该模型中,pH值是最重要的影响因素。然而,在不同的pH值下,温度、初始铀浓度、吸附时间和细菌浓度有不同的影响。当pH值低于6时,最重要的因素是温度,而一旦pH值大于6,初始浓度就是最重要的因素。这些结果有望为通过[具体物质]调节U(VI)的富集程度、实现U(VI)的最大长期稳定固定以及理解不同条件下铀的环境化学行为提供理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/713d/12030973/5f3243b61489/toxics-13-00305-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验