Hedden Peter
Laboratory of Growth Regulators, Institute of Experimental Botany and Palacký University Olomouc, 78371, Olomouc, Czech Republic.
Sustainable Soils and Crops, Rothamsted Research, Harpenden, AL5 2 JQ, UK.
Planta. 2025 Apr 25;261(6):118. doi: 10.1007/s00425-025-04699-w.
Two papers with quite different objectives established protocols that proved pivotal for future work on the role of gibberellins in seed germination. In their paper published in 1967, Russell Jones and Joseph Varner (Planta 72: 155-161) developed a bioassay based on induction of α-amylase activity in barley embryo-less half-seeds that was specific for bioactive gibberellins. The induction of α-amylase in the aleurone of barley and other cereals was to become the experimental system of choice to study gibberellin signalling. However, despite much progress in identifying the molecular events linking gibberellin action and α-amylase gene expression, in many cases their role in the process is still unclear. In 1987, Steven Groot and Cees Karssen (Planta 171:525-531) showed that germination of tomato seeds was limited by the ability of the radicle to penetrate the surrounding layers, with the endosperm forming the major barrier. They used a modified needle attached to a tensiometer to measure the force required to break through the endosperm. While in wild-type seeds, a factor from the embryo, assumed to be gibberellin, promoted breakdown of the endosperm, gibberellin-deficient seeds required an external supply of the hormone to weaken the endosperm or for it to be mechanically disrupted for germination to occur. The paradigm of seed germination being physically restricted by surrounding layers and the role of gibberellin in weakening these tissues has been confirmed in many eudicot species. Gibberellin signalling induces the production of cell-wall loosening enzymes in the micropylar endosperm adjacent to the radicle, but it is unclear whether or not this is a direct response. In both eudicot and monocot systems, there is still much to learn about the role of gibberellin signalling in germination.
两篇目标截然不同的论文建立了一些实验方案,这些方案被证明对未来关于赤霉素在种子萌发中作用的研究至关重要。在1967年发表的论文中,拉塞尔·琼斯和约瑟夫·瓦尔纳(《植物》72: 155 - 161)开发了一种基于大麦无胚半种子中α -淀粉酶活性诱导的生物测定法,该方法对生物活性赤霉素具有特异性。大麦和其他谷物糊粉层中α -淀粉酶的诱导成为研究赤霉素信号传导的首选实验系统。然而,尽管在确定连接赤霉素作用和α -淀粉酶基因表达的分子事件方面取得了很大进展,但在许多情况下,它们在这个过程中的作用仍不清楚。1987年,史蒂文·格鲁特和塞斯·卡尔森(《植物》171: 525 - 531)表明,番茄种子的萌发受到胚根穿透周围层能力的限制,胚乳构成了主要障碍。他们使用连接到张力计上的改良针头来测量穿透胚乳所需的力。在野生型种子中,一种来自胚的因子(假定为赤霉素)促进胚乳的分解,而缺乏赤霉素的种子需要外源供应这种激素来削弱胚乳,或者需要对其进行机械破坏才能发生萌发。种子萌发受到周围层物理限制以及赤霉素在削弱这些组织中的作用这一范式已在许多双子叶植物物种中得到证实。赤霉素信号传导诱导靠近胚根的珠孔端胚乳中细胞壁松弛酶的产生,但尚不清楚这是否是一种直接反应。在双子叶植物和单子叶植物系统中关于赤霉素信号传导在萌发中的作用仍有许多有待了解之处。