Kuśmierz Łukasz, Pereira-Obilinovic Ulises, Lu Zhixin, Mastrovito Dana, Mihalas Stefan
Allen Institute, Seattle, Washington, USA.
Phys Rev Lett. 2025 Apr 11;134(14):148402. doi: 10.1103/PhysRevLett.134.148402.
We introduce a model of randomly connected neural populations and study its dynamics by means of the dynamical mean-field theory and simulations. Our analysis uncovers a rich phase diagram, featuring high- and low-dimensional chaotic phases, separated by a crossover region characterized by low values of the maximal Lyapunov exponent and participation ratio dimension, but with high values of the Lyapunov dimension that change significantly across the region. Counterintuitively, chaos can be attenuated by either adding noise to strongly modular connectivity or by introducing modularity into random connectivity. Extending the model to include a multilevel, hierarchical connectivity reveals that a loose balance between activities across levels drives the system towards the edge of chaos.
我们引入了一个随机连接神经群体的模型,并通过动态平均场理论和模拟来研究其动力学。我们的分析揭示了一个丰富的相图,其特征包括高维和低维混沌相,它们由一个交叉区域分隔开,该交叉区域的特征是最大李雅普诺夫指数和参与比维度的值较低,但李雅普诺夫维度的值较高,且在该区域内变化显著。与直觉相反,通过向强模块化连接添加噪声或在随机连接中引入模块化,都可以减弱混沌。将模型扩展到包括多级分层连接表明,各层活动之间的松散平衡会驱使系统趋向混沌边缘。