Huang Yunfan, Wang Moran
Department of Engineering Mechanics and Laboratory of APS, Tsinghua University, Beijing 100084, China.
Department of Engineering Mechanics and Laboratory of APS, Tsinghua University, Beijing 100084, China.
Adv Colloid Interface Sci. 2025 Apr 17;342:103518. doi: 10.1016/j.cis.2025.103518.
The electrification effects and electrokinetic flow phenomena at immiscible liquid-liquid interfaces have been a subject of scientific inquiry for over a century. Unlike solid-liquid interfaces, liquid-liquid interfaces exhibit not only multiphysical and cross-scale characteristics but also diffuse soft properties, including finite thickness, fluidity, ion adsorbability, and permeability, which introduces diverse interfacial charging mechanisms and conductive dielectric properties, imparting unique characteristics to electrokinetic multiphase flow systems. Electrokinetic multiphase hydrodynamics (EKmHD), grounded in electrochemistry and colloid and interface science, has experienced renewed interest in recent years. This is particularly evident in systems such as the interface between two immiscible electrolyte solutions (ITIES) in electrochemistry, self-propelling droplets in physicochemical hydrodynamics, and digital microfluidics in electromechanics. The multiphase diffuse soft nature of charged liquid-liquid interfaces introduces novel physical scales and theoretical dimensions, positioning EKmHD as a potential foundation for a new interdisciplinary field rather than merely a cross-disciplinary area. This review highlights the need for an integrated research approach that combines interfacial charging mechanisms with electrokinetic flows, alongside a cross-scale modeling framework for interfacial multiphysical transport. It systematically organizes the characteristics of liquid-liquid interfaces from the perspectives of charging mechanisms and electrokinetic behaviors, with particular emphasis on spontaneous partition- and adsorption-induced charging at the interface, and the strong coupling between multiphase diffuse soft interface flow and ion transport. Furthermore, the paper comprehensively summarizes the transport mechanisms of electrokinetic multiphase flows concerning interfacial ion transport and fluid flow, while refining the corresponding dominant dimensionless parameters. Additionally, it systematically consolidates current understanding of typical electrokinetic multiphase flow scenarios, with special focus on potential future research directions. These include the electrokinetic double-sided coupling effects in ITIES systems, solidification and nonlinear effects in droplet/bubble electrophoresis, the validity of the leaky dielectric model, electrokinetic instabilities of jets and ion-selective soft interfaces, and the active and passive control of two-phase electrokinetic wetting dynamics and displacement.
一个多世纪以来,不混溶液 - 液界面处的起电效应和电动流动现象一直是科学研究的主题。与固 - 液界面不同,液 - 液界面不仅呈现多物理和跨尺度特征,还具有扩散软性质,包括有限厚度、流动性、离子吸附性和渗透性,这引入了多样的界面充电机制和导电介电性质,赋予电动多相流系统独特的特性。基于电化学以及胶体与界面科学的电动多相流体动力学(EKmHD)近年来重新受到关注。这在诸如电化学中两种不混溶电解质溶液(ITIES)之间的界面、物理化学流体动力学中的自推进液滴以及机电学中的数字微流控等系统中尤为明显。带电液 - 液界面的多相扩散软性质引入了新的物理尺度和理论维度,使 EKmHD 成为一个新的跨学科领域的潜在基础,而不仅仅是一个交叉学科领域。本综述强调需要一种综合研究方法,将界面充电机制与电动流动相结合,以及一个用于界面多物理传输的跨尺度建模框架。它从充电机制和电动行为的角度系统地组织了液 - 液界面的特征,特别强调界面处自发分配和吸附诱导的充电,以及多相扩散软界面流动与离子传输之间的强耦合。此外,本文全面总结了电动多相流关于界面离子传输和流体流动的传输机制,同时完善了相应的主导无量纲参数。此外,它系统地巩固了当前对典型电动多相流场景的理解,特别关注潜在的未来研究方向。这些包括 ITIES 系统中的电动双面耦合效应、液滴/气泡电泳中的凝固和非线性效应、漏电介质模型的有效性、射流和离子选择性软界面的电动不稳定性,以及两相电动润湿动力学和驱替的主动和被动控制。