Lou Wenyu, Huang Zhenyu, Xie Haidong, Muhammad Ahsan Hafiz, Zhang Chao, Gharsallaoui Adem, Cai Ming, Wang Jian
Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, Hangzhou 310014, China.
Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, Hangzhou 310014, China; State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
Int J Biol Macromol. 2025 May;310(Pt 4):143450. doi: 10.1016/j.ijbiomac.2025.143450. Epub 2025 Apr 23.
This study innovatively combined ultrasound-assisted nanoprecipitation with octenyl succinic anhydride (OSA) esterification for dual modification of sweet potato starch (SPS), systematically investigating the impact of modification sequence (nanoprecipitation-first vs. OSA-first) on functional properties. The results showed that OSA-modified nano precipitated SPS (OSA nano SPS) achieved a 10.8 % higher degree of substitution (DS: 0.0184) than nano precipitated OSA-modified SPS (nano OSA SPS, DS: 0.0166), attributed to enhanced OSA accessibility via prior nano structuring. Ultrasonication reduced starch particle size to 77.01 nm and increased amylose content (244.23 mg/g), resulting the increased solubility and the decreased swelling capacity. OSA esterification of SPS was confirmed by FT-IR, with characteristic peaks at 1729 cm (C=O) and 1564 cm (-COONa), improved hydrophobicity (90° contact angle) and formed V-type crystalline structures confirmed by XRD. SEM and TEM analyses conclusively demonstrated that OSA nano SPS exhibited structurally integrated nanoparticles with enhanced surface uniformity and controlled size distribution, while nano OSA SPS displayed irregular aggregates compromising structural integrity. OSA nano SPS exhibited superior Pickering emulsion stability, maintaining over 80 % emulsification index after 120 h, with rheological properties surpassing single-modified counterparts. The work first elucidates the sequence-dependent mechanism of dual modifications, demonstrating that nanoprecipitation before esterification optimizes reaction efficiency and emulsion performance. These findings provide a paradigm for designing starch-based delivery systems through controllable multi-step modification strategies.
本研究创新性地将超声辅助纳米沉淀与辛烯基琥珀酸酐(OSA)酯化相结合,对甘薯淀粉(SPS)进行双重改性,系统研究了改性顺序(先纳米沉淀与先OSA)对功能特性的影响。结果表明,OSA改性的纳米沉淀SPS(OSA纳米SPS)的取代度(DS:0.0184)比纳米沉淀的OSA改性SPS(纳米OSA SPS,DS:0.0166)高10.8%,这归因于通过预先的纳米结构化增强了OSA的可及性。超声处理将淀粉粒径减小至77.01 nm,并增加了直链淀粉含量(244.23 mg/g),导致溶解度增加和溶胀能力降低。通过傅里叶变换红外光谱(FT-IR)证实了SPS的OSA酯化,在1729 cm(C=O)和1564 cm(-COONa)处有特征峰,改善了疏水性(90°接触角),并通过X射线衍射(XRD)证实形成了V型晶体结构。扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析最终表明,OSA纳米SPS呈现出结构完整的纳米颗粒,表面均匀性增强且尺寸分布可控,而纳米OSA SPS则显示出不规则聚集体,损害了结构完整性。OSA纳米SPS表现出优异的皮克林乳液稳定性,120小时后乳化指数保持在80%以上,其流变性能超过单改性对应物。这项工作首次阐明了双重改性的顺序依赖性机制,表明酯化前的纳米沉淀优化了反应效率和乳液性能。这些发现为通过可控的多步改性策略设计基于淀粉的递送系统提供了范例。