文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Synthesis and catalytic activity of silver- reduced graphene oxide and silver- magnetite- reduced graphene oxide nanocomposites in the reduction of 4-nitrophenol.

作者信息

Kabiri Bahareh, Heidari Hannaneh

机构信息

Department of Inorganic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.

出版信息

Sci Rep. 2025 Apr 25;15(1):14539. doi: 10.1038/s41598-025-98540-9.


DOI:10.1038/s41598-025-98540-9
PMID:40281036
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12032150/
Abstract

The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is vital for environmental remediation. This study synthesizes and assesses silver-reduced graphene oxide (Ag/rGO) and silver-magnetite-reduced graphene oxide (Ag/FeO/rGO) nanocomposites for 4-NP reduction. Various reducing agents-ascorbic acid (AA), hydrazine hydrate (HH), sodium borohydride (SBH), and cellulose nanofibers (NFC)-were employed under reflux (R), hydrothermal (H), and ultrasonic (U) conditions. Drying methods (oven-drying (O) and freeze-drying (F)) and CTAB as a stabilizer were explored to optimize Ag NP distribution. The nanocomposites were characterized using FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, ICP-OES, and VSM. XRD confirmed Ag NP formation with crystallite sizes of 12-23 nm. FE-SEM and TEM showed uniform distribution of cubic FeO and spherical Ag NPs (approximately 50 nm) on GO. The Ag/FeO/rGO(O)-AA-U-F nanocomposite demonstrated the highest catalytic activity, with a pseudo-first-order rate constant (k) of 1.81 min and a specific activity parameter (k') of 180.77 min.g. This nanocomposite exhibited a mesoporous structure with a high specific surface area (226.9 m/g) and uniform Ag and FeO nanoparticle distribution on rGO. The combination of ascorbic acid (AA) and freeze-drying (F) yielded nanocomposites with superior catalytic performance due to their porous structure and uniform nanoparticle dispersion.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/6dc8c769213f/41598_2025_98540_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/b0949faedef7/41598_2025_98540_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/46c148c6a5fb/41598_2025_98540_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/08073c562576/41598_2025_98540_Fig3a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/055739a3804b/41598_2025_98540_Fig4a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/381333c12fd1/41598_2025_98540_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/ec92d6d48959/41598_2025_98540_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/6117644ffed2/41598_2025_98540_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/933b8b995560/41598_2025_98540_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/7fc4ca1e2217/41598_2025_98540_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/e9ecbe3778bf/41598_2025_98540_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/336c9a8c086d/41598_2025_98540_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/6dc8c769213f/41598_2025_98540_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/b0949faedef7/41598_2025_98540_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/46c148c6a5fb/41598_2025_98540_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/08073c562576/41598_2025_98540_Fig3a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/055739a3804b/41598_2025_98540_Fig4a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/381333c12fd1/41598_2025_98540_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/ec92d6d48959/41598_2025_98540_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/6117644ffed2/41598_2025_98540_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/933b8b995560/41598_2025_98540_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/7fc4ca1e2217/41598_2025_98540_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/e9ecbe3778bf/41598_2025_98540_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/336c9a8c086d/41598_2025_98540_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ce/12032150/6dc8c769213f/41598_2025_98540_Fig12_HTML.jpg

相似文献

[1]
Synthesis and catalytic activity of silver- reduced graphene oxide and silver- magnetite- reduced graphene oxide nanocomposites in the reduction of 4-nitrophenol.

Sci Rep. 2025-4-25

[2]
Green synthesis and synergistic catalytic effect ofAg/reduced graphene oxide nanocomposite.

Nanoscale Res Lett. 2014-9-11

[3]
Amine-functionalized reduced graphene oxide-supported silver nanoparticles for superior catalytic reduction of organic pollutants.

Environ Sci Pollut Res Int. 2023-9

[4]
Sono-synthesis approach in uniform loading of ultrafine Ag nanoparticles on reduced graphene oxide nanosheets: An efficient catalyst for the reduction of 4-Nitrophenol.

Ultrason Sonochem. 2018-6

[5]
Green syntheses of silver nanoparticle decorated reduced graphene oxide using l-methionine as a reducing and stabilizing agent for enhanced catalytic hydrogenation of 4-nitrophenol and antibacterial activity.

RSC Adv. 2019-11-28

[6]
Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity.

J Colloid Interface Sci. 2015-12-1

[7]
Elucidating the structural, catalytic, and antibacterial traits of Ficus carica and Azadirachta indica leaf extract-mediated synthesis of the Ag/CuO/rGO nanocomposite.

Microsc Res Tech. 2024-5

[8]
Immobilization of silver-loaded graphene oxide (Ag-GO) on canvas fabric support for catalytic conversion of 4 nitrophenol.

Environ Sci Pollut Res Int. 2024-8

[9]
Cellulose nanocrystals‑silver nanoparticles-reduced graphene oxide based hybrid PVA nanocomposites and its antimicrobial properties.

Int J Biol Macromol. 2021-11-30

[10]
Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

Int J Nanomedicine. 2015-10-5

本文引用的文献

[1]
Mangrove tree aerial root extract mediated green synthesis of Ag/FeO/rGO nanocomposite and its application as a catalyst for one pot synthesis of 7-phenyl-6H,7H-benzo[4,5]imidazo[2,1-b]chromeno[4,3-d][1,3]thiazin-6-one derivatives.

Environ Sci Pollut Res Int. 2024-10

[2]
Biogenic synthesis of reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using table olive (olea europaea) for efficient and rapid catalytic reduction of organic pollutants.

Chemosphere. 2023-1

[3]
Reduction of 4-nitrophenol using green-fabricated metal nanoparticles.

RSC Adv. 2022-6-24

[4]
Green syntheses of silver nanoparticle decorated reduced graphene oxide using l-methionine as a reducing and stabilizing agent for enhanced catalytic hydrogenation of 4-nitrophenol and antibacterial activity.

RSC Adv. 2019-11-28

[5]
Synthesis of graphene aerogels using cyclohexane and -butanol as soft templates.

RSC Adv. 2020-4-8

[6]
Progress in the functional modification of graphene/graphene oxide: a review.

RSC Adv. 2020-4-17

[7]
High-efficient reduction of methylene blue and 4-nitrophenol by silver nanoparticles embedded in magnetic graphene oxide.

Environ Sci Pollut Res Int. 2023-6

[8]
Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review.

Polymers (Basel). 2019-4-20

[9]
Electrochemically active biofilm assisted synthesis of Ag@CeO₂ nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes.

J Colloid Interface Sci. 2014-10-1

[10]
Improved synthesis of graphene oxide.

ACS Nano. 2010-8-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索