Suppr超能文献

虚拟受试者中跨一系列肾功能的实际白蛋白浓度,以考虑生理药代动力学(PBPK)模型内蛋白质结合的变异性。

Realistic Albumin Concentrations in Virtual Subjects Across A Spectrum of Renal Function to Account for Variability in Protein Binding Within PBPK Models.

作者信息

Hu Yuming, Scotcher Daniel

机构信息

Division of Pharmacy and Optometry, The University of Manchester, Manchester, UK.

Centre for Applied Pharmacokinetic Research, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.

出版信息

AAPS J. 2025 Apr 26;27(4):82. doi: 10.1208/s12248-025-01062-5.

Abstract

Use of physiologically-based pharmacokinetic (PBPK) modelling for extrapolation to organ impairment populations requires successful prediction for physiological changes. For drugs bound to human serum albumin (HSA), prediction of albumin concentrations is crucial to predict population differences in fraction unbound in plasma (fu). In this study, a multi-variable model was developed for prediction of HSA concentrations in renal impairment, using easily accessible variables (BMI, eGFR, age, sex, race and ethnicity) as predictors. An increase of eGFR from 15 to 90 mL/min/1.73m was predicted to elevate HSA concentration by 0.30-0.32 g/dL regardless of subjects' characteristics. Data from obese patients undergoing mini-gastric bypass surgery was used for external validation (observed BMI from 44.5 to 27.3 kg/m, leading to predicted HSA concentration change of 0.3 versus 0.1-0.3 g/dL), highlighting the model's potential to enhance PBPK simulations for a broader population. Application of the new albumin model for predicting fu in renal impairment was evaluated with the single binding protein model. Consideration of inter-individual variability predicted by the albumin model could explain some variability in the observed fu data between different drugs and studies (54% observed records within 2.5th-97.5th percentile range of prediction). However, overall underprediction of fold-change in fu between healthy and severe renal impairment (45% observed data exceeded 97.5th percentile of prediction) was noted. Although accounting for changes in binding affinity in predictive models of fu remains a challenge, the newly developed albumin model can support generation of realistic virtual subjects to support PBPK predictions of plasma protein binding.

摘要

使用基于生理的药代动力学(PBPK)模型外推至器官功能损害人群需要成功预测生理变化。对于与人血清白蛋白(HSA)结合的药物,预测白蛋白浓度对于预测血浆中游离分数(fu)的人群差异至关重要。在本研究中,开发了一个多变量模型来预测肾功能损害患者的HSA浓度,使用易于获取的变量(BMI、估算肾小球滤过率[eGFR]、年龄、性别、种族和民族)作为预测因子。预计eGFR从15增加到90 mL/min/1.73m²会使HSA浓度升高0.30 - 0.32 g/dL,与受试者特征无关。接受迷你胃旁路手术的肥胖患者的数据用于外部验证(观察到的BMI从44.5降至27.3 kg/m²,导致预测的HSA浓度变化为0.3 g/dL,而预测范围为0.1 - 0.3 g/dL),突出了该模型增强更广泛人群PBPK模拟的潜力。使用单一结合蛋白模型评估了新白蛋白模型在预测肾功能损害患者fu方面的应用。考虑白蛋白模型预测的个体间变异性可以解释不同药物和研究之间观察到的fu数据中的一些变异性(54%的观察记录在预测的第2.5至97.5百分位数范围内)。然而,注意到健康与严重肾功能损害之间fu的变化倍数总体预测不足(45%的观察数据超过预测的第97.5百分位数)。尽管在fu的预测模型中考虑结合亲和力的变化仍然是一个挑战,但新开发的白蛋白模型可以支持生成现实的虚拟受试者,以支持血浆蛋白结合的PBPK预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验