Suppr超能文献

用于增强材料喷射中墨滴形成的非线性波形优化

Nonlinear Waveform Optimization for Enhanced Ink Droplet Formation in Material Jetting.

作者信息

Shen Qintao, Zhang Li, Ji Renquan, Saetang Viboon, Qi Huan

机构信息

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

Advanced Materials Additive Manufacturing Innovation Research Center, Hangzhou City University, Hangzhou 310015, China.

出版信息

Micromachines (Basel). 2025 Apr 9;16(4):445. doi: 10.3390/mi16040445.

Abstract

Material jetting, as a critical additive manufacturing technology, relies on precise control of the driving waveform to achieve high-quality droplet formation. During the droplet ejection process, pressure fluctuation at the nozzle outlet plays a significant role in droplet formation. Traditional experimental methods for optimizing the driving waveform often struggle to address the complex nonlinearities inherent in the jetting process. In this study, a numerical simulation model of the droplet ejection process is established to elucidate the influence mechanism of nozzle outlet pressure oscillations on droplet formation. A novel optimization method combining Convolutional Neural Networks (CNNs) and Particle Swarm Optimization (PSO) is proposed, targeting the suppression of residual pressure oscillations and achieving the desired pressure fluctuation. The method leverages nonlinear regression and optimization to obtain the optimal waveform design. Simulation and experimental results demonstrate that the optimized waveform effectively suppresses residual pressure oscillations, significantly improves droplet formation quality, and reduces pressure fluctuation convergence time by approximately 32.19%. The findings demonstrate that the optimized waveform effectively improves droplet ejection quality and stability.

摘要

材料喷射作为一种关键的增材制造技术,依赖于对驱动波形的精确控制来实现高质量的液滴形成。在液滴喷射过程中,喷嘴出口处的压力波动对液滴形成起着重要作用。传统的优化驱动波形的实验方法往往难以解决喷射过程中固有的复杂非线性问题。在本研究中,建立了液滴喷射过程的数值模拟模型,以阐明喷嘴出口压力振荡对液滴形成的影响机制。提出了一种结合卷积神经网络(CNN)和粒子群优化(PSO)的新型优化方法,旨在抑制残余压力振荡并实现所需的压力波动。该方法利用非线性回归和优化来获得最佳波形设计。仿真和实验结果表明,优化后的波形有效地抑制了残余压力振荡,显著提高了液滴形成质量,并将压力波动收敛时间缩短了约32.19%。研究结果表明,优化后的波形有效地提高了液滴喷射质量和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验