Suppr超能文献

一种使用具有人工磁导体增强结构的新型天线设计验证的单场时域有限差分法。

A Single-Field Finite Difference Time-Domain Method Verified Using a Novel Antenna Design with an Artificial Magnetic Conductor Enhanced Structure.

作者信息

Qi Yongjun, Liang Weibo, Hu Yilan, Zhang Liang, You Cheng, Zhang Yuxiang, Yan Tianrun, Zheng Hongxing

机构信息

School of Computer Science and Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China.

Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices, School of Information Engineering, Handan University, Handan 056005, China.

出版信息

Micromachines (Basel). 2025 Apr 21;16(4):489. doi: 10.3390/mi16040489.

Abstract

The Finite Difference Time-Domain (FDTD) method is a powerful tool for electromagnetic field analysis. In this work, we develop a variation of the algorithm to accurately calculate antenna, microwave circuit, and target scattering problems. To improve efficiency, a single-field (SF) FDTD method is proposed as a numerical solution to the time-domain Helmholtz equations. New formulas incorporating resistors and voltage sources are derived for the SF-FDTD algorithm, including hybrid implicit-explicit and weakly conditionally stable SF-FDTD methods. The correctness of these formulas is verified through numerical simulations of a newly designed dual-band wearable antenna with an artificial magnetic conductor (AMC) structure. A novel antenna fed by a coplanar waveguide with a compact size of 15.6 × 20 mm has been obtained after being optimized through an artificial intelligent method. A double-layer, dual-frequency AMC structure is designed to improve the isolation between the antenna and the human body. The simulation and experiment results with different bending degrees show that the antenna with the AMC structure can cover two frequency bands, 2.4 GHz-2.48 GHz and 5.725 GHz-5.875 GHz. The gain at 2.45 GHz and 5.8 GHz reaches 5.3 dBi and 8.9 dBi, respectively. The specific absorption rate has been reduced to the international standard range. In particular, this proposed SF-FDTD method can be extended to analyze other electromagnetic problems with fine details in one or two directions.

摘要

时域有限差分(FDTD)方法是一种用于电磁场分析的强大工具。在这项工作中,我们开发了该算法的一种变体,以精确计算天线、微波电路和目标散射问题。为了提高效率,提出了一种单场(SF)FDTD方法作为时域亥姆霍兹方程的数值解。推导了包含电阻器和电压源的新公式用于SF-FDTD算法,包括混合显隐式和弱条件稳定的SF-FDTD方法。通过对一种新设计的具有人工磁导体(AMC)结构的双频可穿戴天线进行数值模拟,验证了这些公式的正确性。通过人工智能方法优化后,获得了一种由共面波导馈电的新颖天线,其尺寸紧凑,为15.6×20毫米。设计了一种双层双频AMC结构,以改善天线与人体之间的隔离。不同弯曲程度的仿真和实验结果表明,具有AMC结构的天线可以覆盖2.4 GHz - 2.48 GHz和5.725 GHz - 5.875 GHz两个频段。在2.45 GHz和5.8 GHz处的增益分别达到5.3 dBi和8.9 dBi。比吸收率已降低到国际标准范围内。特别是,所提出的SF-FDTD方法可以扩展到分析在一个或两个方向上具有精细细节的其他电磁问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/103f/12029290/7634fa9fb166/micromachines-16-00489-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验