Suppr超能文献

基于FPGA平台利用强化学习的智能电动汽车充电管理

Smart Electric Vehicle Charging Management Using Reinforcement Learning on FPGA Platforms.

作者信息

Damodarin Udhaya Mugil, Cardarilli Gian Carlo, Di Nunzio Luca, Re Marco, Spanò Sergio

机构信息

Department of Electronic Engineering, Tor Vergata University of Rome, Via del Politecnico 1, 00133 Rome, Italy.

出版信息

Sensors (Basel). 2025 Apr 19;25(8):2585. doi: 10.3390/s25082585.

Abstract

This paper presents a smart electric vehicle (EV) charging management system that integrates Reinforcement Learning intelligence on a Field-Programmable Gate Array (FPGA) platform. The system is based on the Q-learning algorithm, where the RL agent perceives environmental conditions, captured through hardware sensors such as current, voltage, and priority indicators, and makes optimal charging decisions to address grid stress and prioritize charging needs. The FPGA implementation leverages hardware design strategies to ensure efficient operation and real-time response within a limited amount of required energy, allowing for its implementation in embedded applications and possibly enabling the use of an energy harvesting power source, like a small solar panel. The proposed design effectively manages multiple EV chargers by dynamically allocating current and prioritizing charging tasks to maintain service quality. Through intelligent decision making, informed by continuous sensor feedback, the system adapts to fluctuating grid conditions and optimizes energy distribution. Key findings highlight the system's ability to maintain stable operation under varying demand conditions, improving power efficiency, safety, and service reliability. Moreover, the design is scalable, enabling seamless expansion for larger installations by following consistent architectural guidelines. This FPGA-based solution combines RL intelligence, sensor-based environmental perception, and robust hardware design, offering a practical framework for an efficient EV charging infrastructure in modern smart grid environments.

摘要

本文介绍了一种智能电动汽车(EV)充电管理系统,该系统在现场可编程门阵列(FPGA)平台上集成了强化学习智能。该系统基于Q学习算法,其中强化学习智能体感知通过电流、电压和优先级指示器等硬件传感器捕获的环境条件,并做出最优充电决策,以应对电网压力并对充电需求进行优先级排序。FPGA实现利用硬件设计策略,以确保在有限的所需能量内高效运行和实时响应,从而允许其在嵌入式应用中实现,并可能允许使用能量收集电源,如小型太阳能电池板。所提出的设计通过动态分配电流和对充电任务进行优先级排序来有效管理多个电动汽车充电器,以维持服务质量。通过持续传感器反馈提供的信息进行智能决策,该系统适应波动的电网条件并优化能量分配。主要研究结果突出了该系统在不同需求条件下维持稳定运行的能力,提高了功率效率、安全性和服务可靠性。此外,该设计具有可扩展性,通过遵循一致的架构准则能够为更大规模的设施实现无缝扩展。这种基于FPGA的解决方案结合了强化学习智能、基于传感器的环境感知和强大硬件设计,为现代智能电网环境中高效的电动汽车充电基础设施提供了一个实用框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767e/12031526/286c228ac7c8/sensors-25-02585-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验