Suppr超能文献

通过扩环羰基化反应合成β-内酯的催化剂设计进展

Advances in Catalyst Design for β-Lactone Formation via Ring-Expansion Carbonylation.

作者信息

Hasnain Ali, Ganesan Vinothkumar, Yoon Sungho

机构信息

Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.

出版信息

Molecules. 2025 Mar 21;30(7):1399. doi: 10.3390/molecules30071399.

Abstract

Over the past three decades, β-lactones have emerged as valuable intermediates for producing diverse industrial chemicals and biodegradable polymers. The ring-expansion carbonylation (REC) of epoxides has become an atom-economical and direct approach to β-lactone production, leveraging readily available carbon monoxide and epoxides. While homogeneous catalysts, particularly bimetallic [Lewis acid][Lewis base]-type systems, have demonstrated exceptional activity and selectivity, issues like recycling and separation limit the industrial scalability. Heterogenized catalysts offer advantages such as ease of separation and reusability but suffer from reduced efficiency. Recent advancements in porous polymer-based heterogeneous systems, including immobilized cobaltate anions, address these challenges by combining high surface areas with enhanced catalytic performance. Herein, we explore the evolution of homogeneous to heterogeneous REC catalysts, highlighting emerging porous materials and their potential for scalable β-lactone synthesis. Future directions emphasize overcoming the remaining barriers to establish robust, efficient, and sustainable catalytic processes.

摘要

在过去三十年中,β-内酯已成为生产多种工业化学品和可生物降解聚合物的重要中间体。环氧化物的扩环羰基化反应(REC)利用易得的一氧化碳和环氧化物,已成为一种原子经济且直接的β-内酯生产方法。虽然均相催化剂,特别是双金属[路易斯酸][路易斯碱]型体系,已展现出卓越的活性和选择性,但回收和分离等问题限制了其工业规模应用。多相催化剂具有易于分离和可重复使用等优点,但效率有所降低。基于多孔聚合物的多相体系,包括固定化钴酸盐阴离子,近期取得的进展通过结合高比表面积和增强的催化性能来应对这些挑战。在此,我们探讨均相REC催化剂向多相REC催化剂的演变,突出新兴的多孔材料及其在可扩展β-内酯合成中的潜力。未来的发展方向着重于克服剩余障碍,以建立稳健、高效且可持续的催化过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fb4/11990104/9e0efb9702b5/molecules-30-01399-sch002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验