Hector Simon, Ahmad Qasid, Patten Clifford G C, Chiaradia Massimo, Nomikou Paraskevi, Kilias Stephanos, Peillod Alexandre, Wagner Simon, Kolb Jochen
Institute of Applied Geosciences, Geochemistry and Economic Geology, KIT, Karlsruhe, Germany.
Laboratory for Environmental and Raw Materials Analysis, Karlsruhe, Germany.
Sci Rep. 2025 Apr 26;15(1):14673. doi: 10.1038/s41598-025-99586-5.
Hydrothermal chimneys are the upmost expression of fluids, metals and ligands transfer from the subseafloor to the hydrosphere, eventually forming seafloor massive sulfides. In volcanic arc settings, both magmatic and hydrothermal fluids occur together. While each fluid reflects different metal mobilizing mechanisms (i.e. magmatic degassing and hydrothermal leaching of subseafloor lithologies), it is unclear which metals they respectively provide to the budget of the chimneys. We investigate the metal sources and mobilizing mechanisms associated with a gold-rich hydrothermal field from Kolumbo volcano (South Aegean Volcanic Arc, Greece) by comparing Pb isotope ratios of ore minerals from a chimney with those of potential source rocks. Four key findings result from our study: (1) Kolumbo volcanic rocks are the main source of Pb for the chimneys; (2) Magmatic assimilation of Cycladic Basement allows to track magmatic differentiation and identify metal mobilizing mechanisms for Pb and metals with similar behavior. At Kolumbo, magmatic degassing mobilizes As, Ag, Au, Cu, Hg, Sb, Sn and Zn along with Pb, while hydrothermal leaching of rhyolite provides Tl and likely some base metals to the chimneys; (3) Magmatic fluids contributed to galena and Sb-Pb sulfosalts formation while pyrite formed from hydrothermal fluids leaching rhyolite; (4) Galena growth zones in pyrite reveal episodic pulses of magmatic fluids during the chimney growth. The combined use of Pb isotopes on ore minerals and source rocks provides an additional tool to discriminate between magmatic and hydrothermal fluids contribution during seafloor massive sulfide formation, especially in arc settings where magmatic assimilation of crustal material with distinct isotopic signature is more likely to occur.
热液烟囱是流体、金属和配体从海底转移到水圈的最显著表现形式,最终形成海底块状硫化物。在火山弧环境中,岩浆流体和热液流体同时存在。虽然每种流体反映了不同的金属迁移机制(即岩浆脱气和海底岩性的热液淋滤),但尚不清楚它们分别为烟囱的物质来源提供了哪些金属。我们通过比较来自希腊南爱琴火山弧科隆布火山一个富金热液场的烟囱矿石矿物与潜在源岩的铅同位素比值,研究了与该热液场相关的金属来源和迁移机制。我们的研究得出了四个关键发现:(1)科隆布火山岩是烟囱铅的主要来源;(2)基克拉迪基底的岩浆同化作用有助于追踪岩浆分异,并确定铅和行为相似的金属的迁移机制。在科隆布,岩浆脱气使砷、银、金、铜、汞、锑、锡和锌与铅一起迁移,而流纹岩的热液淋滤为烟囱提供了铊以及可能的一些贱金属;(3)岩浆流体促成了方铅矿和锑 - 铅硫盐的形成,而黄铁矿则由热液流体淋滤流纹岩形成;(4)黄铁矿中方铅矿的生长带揭示了烟囱生长过程中岩浆流体的间歇性脉冲。在矿石矿物和源岩上联合使用铅同位素,为区分海底块状硫化物形成过程中岩浆流体和热液流体的贡献提供了一个额外的工具,特别是在更有可能发生具有独特同位素特征的地壳物质岩浆同化作用的弧环境中。