Calabro Rosemary L, Longstaff Garret L, Tang Edward M, Xiao Veronika M, Zammit Alexa S, Zhang Felita W, Nagelli Enoch A, Chapman Peter H, Lawton Timothy J, Allen Mark A, Losch Anchor R, Palmer Jesse L, Ciampa Alexander D, Burpeau Ian Z, Lucian Veronica M, Mandes Galen T, Bartolucci Stephen F, Maurer Joshua A, Burpo F John
Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996 , United States.
U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, New York 12189, United States.
ACS Appl Mater Interfaces. 2025 May 7;17(18):26854-26870. doi: 10.1021/acsami.5c00693. Epub 2025 Apr 27.
There is an increasing need for free-standing, conformal electrodes for practical energy storage devices. To address this, we demonstrate the magnetic-field-assisted synthesis of interpenetrating Fe nanowire (FeNW) gels without the use of templates or composite scaffold material over a range of magnetic fields. In either a wet gel or a supercritical dried state as an aerogel, the FeNWs may be pressed into thin or conformal films. Varying the applied magnetic field strength with a solenoid during chemical synthesis resulted in increased nanowire length and local orientation of the FeNWs with increasing magnetic field strength, with approximately 80 nm diameters across field strengths of 0-150 mT. Flowing KPtCl or CuSO·5HO solutions through the wet iron gels to achieve the near complete galvanic displacement of iron to the more noble [PtCl] and Cu ions resulted in either platinum nanotubes (PtNTs) or copper nanowires (CuNWs) while maintaining a percolating network structure. Similar to the FeNW gels, the PtNT and CuNW gels were able to be supercritical dried and/or pressed into thin or conformal electrode films. CuNW and PtNT films demonstrated good potential as capacitive and oxygen reduction reaction electrodes, respectively. The magnetic-field-assisted synthesis of ferromagnetic iron nanowires offers a simple, rapid, and tunable method that, when combined with galvanic displacement with more noble metal ions, may enable a wide range of metal, alloy, and multimetallic nanowires and nanotubes for energy storage, sensing, and catalytic applications.
对于实际的能量存储设备而言,对独立式共形电极的需求日益增长。为了满足这一需求,我们展示了在一系列磁场中,无需使用模板或复合支架材料,通过磁场辅助合成互穿铁纳米线(FeNW)凝胶的方法。无论是湿凝胶状态还是超临界干燥后作为气凝胶的状态,FeNW都可以被压制成薄膜或共形薄膜。在化学合成过程中,通过螺线管改变施加的磁场强度,随着磁场强度的增加,纳米线长度增加,且FeNW的局部取向也发生变化,在0 - 150 mT的磁场强度范围内,纳米线直径约为80 nm。使KPtCl或CuSO·5HO溶液流过湿铁凝胶,以使铁几乎完全被更贵重的[PtCl]和Cu离子发生电置换,从而得到铂纳米管(PtNTs)或铜纳米线(CuNWs),同时保持渗流网络结构。与FeNW凝胶类似,PtNT和CuNW凝胶能够进行超临界干燥和/或被压制成薄膜或共形电极薄膜。CuNW薄膜和PtNT薄膜分别展现出作为电容性电极和氧还原反应电极的良好潜力。磁场辅助合成铁磁铁纳米线提供了一种简单、快速且可调节的方法,当与用更贵重金属离子进行电置换相结合时,可能实现用于能量存储、传感和催化应用的多种金属、合金及多金属纳米线和纳米管。