Cope Alexander L, Shah Premal
bioRxiv. 2025 Apr 9:2024.09.27.615277. doi: 10.1101/2024.09.27.615277.
Across taxonomical domains, synonymous codons of an amino acid are found to be used at unequal frequencies within genes. This codon usage bias (CUB) is highly variable across species. Genome-wide CUB reflects a balance between adaptive and non-adaptive microevolutionary processes within a species. Variation in microevolutionary processes results in across-species variation in CUB. As CUB is tightly linked to important molecular and biophysical processes, it is critical to understand how changes to these processes are linked to changes in microevolutionary processes. We employed a population genetics model to quantify natural selection and mutation biases on a per-codon basis across the Saccharomycotina budding yeast subphylum. We found that the strength of natural selection and mutation biases varied significantly between closely related yeasts. Across-species variation in natural selection reflected the evolution of tRNA gene copy number. Additionally, we found evidence that changes to tRNA modification expression can contribute to changes in natural selection across species independent of changes to tGCN. Both lines of evidence support the link between the evolution of the tRNA pool and natural selection in codon usage through changes in the translation efficiency of a codon. Furthermore, we found that changes to tGCN often reflected changes to genome-wide GC%, suggesting changes to the tRNA pool reflect changes to mutation bias. Our work establishes how changes in microevolutionary processes impact changes in molecular mechanisms, ultimately shaping the macroevolutionary variation of a trait.
Codon usage bias (CUB) - the non-uniform usage of synonymous codons - is a feature of all genomes and varies across closely related species. Differences in CUB imply differences in the underlying microevolutionary processes (natural selection, mutation bias) driving CUB. CUB is hypothesized to be tightly linked to key molecular processes, particularly mRNA translation. We used a population genetics model to quantify natural selection and mutation bias on a per-codon basis across 327 budding yeasts. We found high variability in the microevolution of CUB and showed that changes in natural selection were correlated with the evolution of the tRNA pool. Our work establishes how variation in molecular mechanisms relates to variation in microevolution, shaping variation in a trait across species.
在不同的分类领域中,人们发现基因内氨基酸的同义密码子使用频率并不相等。这种密码子使用偏好(CUB)在不同物种间具有高度变异性。全基因组的CUB反映了一个物种内适应性和非适应性微进化过程之间的平衡。微进化过程的变化导致了CUB的种间差异。由于CUB与重要的分子和生物物理过程紧密相关,了解这些过程的变化如何与微进化过程的变化相联系至关重要。我们采用了一个群体遗传学模型,在整个子囊菌酵母亚门中逐个密码子地量化自然选择和突变偏好。我们发现,亲缘关系密切的酵母之间,自然选择和突变偏好的强度存在显著差异。自然选择的种间差异反映了tRNA基因拷贝数的进化。此外,我们发现有证据表明,tRNA修饰表达的变化可导致物种间自然选择的变化,而与tGCN的变化无关。这两条证据都支持了tRNA库的进化与密码子使用中自然选择之间通过密码子翻译效率的变化建立的联系。此外,我们发现tGCN的变化通常反映了全基因组GC%的变化,这表明tRNA库的变化反映了突变偏好的变化。我们的工作确定了微进化过程的变化如何影响分子机制的变化,最终塑造了一个性状的宏观进化变异。
密码子使用偏好(CUB)——同义密码子的非均匀使用——是所有基因组的一个特征,并且在亲缘关系密切的物种间存在差异。CUB的差异意味着驱动CUB的潜在微进化过程(自然选择、突变偏好)存在差异。据推测,CUB与关键分子过程紧密相关,尤其是mRNA翻译。我们使用一个群体遗传学模型,在327种芽殖酵母中逐个密码子地量化自然选择和突变偏好。我们发现CUB的微进化具有高度变异性,并表明自然选择的变化与tRNA库的进化相关。我们的工作确定了分子机制的变异如何与微进化的变异相关,塑造了物种间一个性状的变异。