Zheng Zhong, Song Shuyi, Chen Xun, Li Xixing, Li Jing
Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China.
School of Intelligent Manufacturing, Hubei University, Wuhan 430062, China.
Polymers (Basel). 2025 Mar 11;17(6):734. doi: 10.3390/polym17060734.
Numerous strategies have been demonstrated to enhance the mechanical stretchability of electromechanical sensors for widespread applications in wearable electronics. However, ranging from composite to microstructural materials, their electromechanical sensing performances are usually vulnerable to large stretching deformations due to the low-ductility of the infilled conductive components and the modulus mismatch between the flexible polymer substrate and conductive fillers. Here, a novel design strategy is proposed to fabricate ultra-stretchable electromechanical composites constructed by a triple-level interaction conductive network (Tri-LICN) in buckled-TPU microfibers for strain sensors. The Tri-LICN is established by bridging one-dimensional cellulose nanocrystals (CNC) with zero-dimensional gold-nanoparticles (AuNPs) and two-dimensional MXene sheets using interface self-assembly and ultrasound-assisted anchoring to eliminate the modulus mismatching between the conductive material and polymer substrate. The buckled-TPU microfibers are introduced to improve the mechanical stretchability of composites by the external-stimuli-induced imbalance of the stretching conformation of TPU macromolecules. The Tri-LICN MXene/CNC/AuNPs@TPU composite sensor displays an enhanced strain sensitivity (GF2514) with a fast response time (150 ms) over a wide operational strain up to 200% and excellent durability over 1000 tensile cycles. Our finding offers a promising approach to enhancing the performance of stretchable sensors based on polymer materials, providing new opportunities for the development of next-generation electronics.
已经证明了许多策略可增强机电传感器的机械拉伸性,以便在可穿戴电子设备中广泛应用。然而,从复合材料到微观结构材料,由于填充的导电组件的低延展性以及柔性聚合物基板与导电填料之间的模量不匹配,它们的机电传感性能通常容易受到大拉伸变形的影响。在此,提出了一种新颖的设计策略,用于制造由屈曲的热塑性聚氨酯(TPU)微纤维中的三级相互作用导电网络(Tri-LICN)构建的超拉伸机电复合材料,用于应变传感器。通过使用界面自组装和超声辅助锚固将一维纤维素纳米晶体(CNC)与零维金纳米颗粒(AuNP)和二维MXene片材桥接起来,建立Tri-LICN,以消除导电材料与聚合物基板之间的模量不匹配。引入屈曲的TPU微纤维,通过外部刺激引起的TPU大分子拉伸构象失衡来提高复合材料的机械拉伸性。Tri-LICN MXene/CNC/AuNPs@TPU复合传感器在高达200%的宽工作应变范围内显示出增强的应变灵敏度(GF2514),响应时间快(150毫秒),并且在1000次拉伸循环中具有出色的耐久性。我们的发现为提高基于聚合物材料的可拉伸传感器的性能提供了一种有前景的方法,为下一代电子产品的发展提供了新的机会。