Suppr超能文献

基于ESP32的目标检测边缘计算的设计与实现

Design and Implementation of ESP32-Based Edge Computing for Object Detection.

作者信息

Chang Yeong-Hwa, Wu Feng-Chou, Lin Hung-Wei

机构信息

Department of Electrical Engineering, Chang Gung University, Taoyuan City 333, Taiwan.

Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.

出版信息

Sensors (Basel). 2025 Mar 7;25(6):1656. doi: 10.3390/s25061656.

Abstract

This paper explores the application of the ESP32 microcontroller in edge computing, focusing on the design and implementation of an edge server system to evaluate performance improvements achieved by integrating edge and cloud computing. Responding to the growing need to reduce cloud burdens and latency, this research develops an edge server, detailing the ESP32 hardware architecture, software environment, communication protocols, and server framework. A complementary cloud server software framework is also designed to support edge processing. A deep learning model for object recognition is selected, trained, and deployed on the edge server. Performance evaluation metrics, classification time, MQTT (Message Queuing Telemetry Transport) transmission time, and data from various MQTT brokers are used to assess system performance, with particular attention to the impact of image size adjustments. Experimental results demonstrate that the edge server significantly reduces bandwidth usage and latency, effectively alleviating the load on the cloud server. This study discusses the system's strengths and limitations, interprets experimental findings, and suggests potential improvements and future applications. By integrating AI and IoT, the edge server design and object recognition system demonstrates the benefits of localized edge processing in enhancing efficiency and reducing cloud dependency.

摘要

本文探讨了ESP32微控制器在边缘计算中的应用,重点是边缘服务器系统的设计与实现,以评估通过集成边缘计算和云计算所实现的性能提升。为响应减轻云负担和延迟的日益增长的需求,本研究开发了一个边缘服务器,详细介绍了ESP32硬件架构、软件环境、通信协议和服务器框架。还设计了一个互补的云服务器软件框架以支持边缘处理。选择了一个用于目标识别的深度学习模型,在边缘服务器上进行训练和部署。使用性能评估指标、分类时间、MQTT(消息队列遥测传输)传输时间以及来自各种MQTT代理的数据来评估系统性能,特别关注图像大小调整的影响。实验结果表明,边缘服务器显著减少了带宽使用和延迟,有效减轻了云服务器的负载。本研究讨论了系统的优势和局限性,解释了实验结果,并提出了潜在的改进和未来应用。通过集成人工智能和物联网,边缘服务器设计和目标识别系统展示了本地化边缘处理在提高效率和减少对云的依赖方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4659/11945263/db3d8dd4edde/sensors-25-01656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验