Siegele Flora, Eckhard Jan F, Masubuchi Tsugunosuke, Goddard George, Schooss Detlef, Sharapa Dmitry I, Studt Felix, Tschurl Martin, Heiz Ueli
Lehrstuhl für Physikalische Chemie I, Technische Universität München, School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching, Germany.
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.
Chemistry. 2025 Jun 6;31(32):e202500545. doi: 10.1002/chem.202500545. Epub 2025 May 6.
The activation of methane under mild conditions is a challenging but rewarding goal; the underlying key parameters, however, remain elusive. In this study on isolated tantalum Ta compounds exposed to methane in a ring-electrode ion trap, strong changes in the reactivity are observed depending on the compound's degree of oxidation. While the general reaction behavior is presented for species ranging from Ta to TaO based on experimental kinetic studies, we focus in more detail on the dehydrogenation reactions occurring on TaO and the hydrogen atom transfer (HAT) on TaO , for which density functional theory calculations were performed. In the first part, we elucidate the role of Ta-C-Ta bridging motifs in product structures as driving forces for the dehydrogenation of methane on TaO ; in the second part, we investigate the origins of the HAT - a hitherto unknown reaction scheme for binary tantalum oxides. For the latter, we show that the reactivity originates from the spin density on oxygen atoms, which is a typical characteristic of the reaction on other metal oxides. This reflects a change in the reactivity from oxidized metallic systems to metal oxides and demonstrates that chemical modifications of tantalum compounds can achieve different methane activation schemes.
在温和条件下实现甲烷的活化是一个具有挑战性但却很有意义的目标;然而,其潜在的关键参数仍然难以捉摸。在这项关于在环形电极离子阱中暴露于甲烷的孤立钽(Ta)化合物的研究中,根据化合物的氧化程度观察到反应活性有显著变化。基于实验动力学研究给出了从Ta到TaO等物种的一般反应行为,我们更详细地关注TaO上发生的脱氢反应以及TaO上的氢原子转移(HAT),并对其进行了密度泛函理论计算。在第一部分,我们阐明了Ta-C-Ta桥连基序在产物结构中作为TaO上甲烷脱氢驱动力的作用;在第二部分,我们研究了HAT的起源——这是二元钽氧化物迄今为止未知的反应方案。对于后者,我们表明反应活性源于氧原子上的自旋密度,这是在其他金属氧化物上反应的典型特征。这反映了从氧化金属体系到金属氧化物反应活性的变化,并表明钽化合物的化学修饰可以实现不同的甲烷活化方案。