Suppr超能文献

基于兰姆波的平板结构中频分复用-脉位调制方法数据传输方案

Lamb Wave-Based FDM-PPM Method Data Transmission Scheme in Plate Structures.

作者信息

Xu Tong, Wu Bin, Gao Xiang, Liu Jianfeng, Liu Xiucheng

机构信息

College of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China.

School of Information Science and Technology, Beijing University of Technology, Beijing 100124, China.

出版信息

Sensors (Basel). 2025 Mar 19;25(6):1907. doi: 10.3390/s25061907.

Abstract

Lamb wave-based non-electromagnetic communication is an effective solution for real-time information exchange in health monitoring networks of large metallic plate structures. The multimodal nature, dispersive characteristics, and the influence of reflected waves during the propagation of Lamb waves severely limit the duration of communication signals. Within this constrained time, constructing communication signals reasonably is crucial for improving the transmission rate of Lamb wave acoustic data. A coding method based on frequency-division multiplexing-pulse-position modulation (FDM-PPM) is proposed to address the low transmission rate in Lamb wave communication systems. Experimental results demonstrate that the proposed Lamb wave communication system can achieve a maximum transmission rate of up to 50 kbps with a bit error rate as low as 90.7%. Compared with methods using Amplitude-Shift Keying (ASK) and pulse-position modulation (PPM), this method effectively enhances the transmission rate of the Lamb wave communication system while reducing the energy consumption of the excitation signal.

摘要

基于兰姆波的非电磁通信是大型金属板结构健康监测网络中实时信息交换的有效解决方案。兰姆波传播过程中的多模态特性、色散特性以及反射波的影响严重限制了通信信号的持续时间。在这个受限的时间内,合理构建通信信号对于提高兰姆波声学数据的传输速率至关重要。为了解决兰姆波通信系统中传输速率低的问题,提出了一种基于频分复用 - 脉冲位置调制(FDM - PPM)的编码方法。实验结果表明,所提出的兰姆波通信系统能够实现高达50 kbps的最大传输速率,误码率低至90.7%。与使用幅移键控(ASK)和脉冲位置调制(PPM)的方法相比,该方法在降低激励信号能耗的同时,有效提高了兰姆波通信系统的传输速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73bf/11946327/7db45d2ff97c/sensors-25-01907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验