Moutaoukil Myriam El, Lolli Maria Grazia, D'Amone Stefania, Khan Memona, Grillo Roberta, Eyer Joel, Grieco Maddalena, Ursini Ornella, Spadavecchia Jolanda, Cortese Barbara
CNRS, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France.
National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
Discov Nano. 2025 Apr 28;20(1):72. doi: 10.1186/s11671-025-04249-z.
Conventional treatments for glioblastoma (GBM) are hindered by systemic toxicity, limited blood-brain barrier penetration, and therapeutic resistance. To address these challenges, we developed dual-functionalized gold nanoparticles (AuNPs) conjugated with a biotinylated NFL-TBS.40-63 peptide and the chemotherapeutic agent doxorubicin. This platform integrates targeted delivery and therapeutic action to enhance efficacy while minimising off-target effects. Our findings reveal superior cellular uptake, dose- and time-dependent cytotoxicity, and apoptosis induction in GBM cells compared to mono-functionalized counterparts. Furthermore, pH-sensitive drug release profiles underscore the system's potential to exploit the tumour microenvironment's acidic conditions for precise drug delivery. Comprehensive characterisation confirmed the stability, biocompatibility, and functional efficacy of the dual-functionalized AuNPs. This study highlights the promise of these nanoconjugates as a multimodal approach to GBM therapy, paving the way for further translational research in nanomedicine.
胶质母细胞瘤(GBM)的传统治疗方法受到全身毒性、血脑屏障穿透有限和治疗耐药性的阻碍。为应对这些挑战,我们开发了与生物素化的NFL-TBS.40-63肽和化疗药物阿霉素偶联的双功能化金纳米颗粒(AuNPs)。该平台整合了靶向递送和治疗作用,以提高疗效,同时将脱靶效应降至最低。我们的研究结果显示,与单功能化的对应物相比,GBM细胞对其细胞摄取更高、具有剂量和时间依赖性细胞毒性以及诱导细胞凋亡。此外,pH敏感的药物释放曲线突出了该系统利用肿瘤微环境酸性条件进行精确药物递送的潜力。全面表征证实了双功能化AuNPs的稳定性、生物相容性和功能功效。这项研究突出了这些纳米偶联物作为GBM治疗的多模态方法的前景,为纳米医学的进一步转化研究铺平了道路。
ACS Appl Mater Interfaces. 2017-6-7
Nanomaterials (Basel). 2025-1-17
Signal Transduct Target Ther. 2023-8-7