Zuccotti Gianvincenzo, Agnelli Paolo Osvaldo, Labati Lucia, Cordaro Erika, Braghieri Davide, Balconi Simone, Xodo Marco, Losurdo Fabrizio, Berra Cesare Celeste Federico, Pedretti Roberto Franco Enrico, Fiorina Paolo, De Pasquale Sergio Maria, Calcaterra Valeria
Department of Biomedical and Clinical Science, University of Milano, Milano, Italy.
Pediatric Department, Buzzi Children's Hospital, Milano, Italy.
JMIR Res Protoc. 2025 Apr 28;14:e65229. doi: 10.2196/65229.
Early detection of vital sign changes is key to recognizing patient deterioration promptly, enabling timely interventions and potentially preventing adverse outcomes.
In this study, vital parameters (heart rate, respiratory rate, oxygen saturation, and blood pressure) will be measured using the Comestai app to confirm the accuracy of photoplethysmography methods compared to standard clinical practice devices, analyzing a large and diverse population. In addition, the app will facilitate big data collection to enhance the algorithm's performance in measuring hemoglobin, glycated hemoglobin, and total cholesterol.
A total of 3000 participants will be consecutively enrolled to achieve the objectives of this study. In all patients, personal data, medical condition, and treatment overview will be recorded. The "by face" method for remote photoplethysmography vital sign data collection involves recording participants' faces using the front camera of a mobile device (iOS or Android) for approximately 1.5 minutes. Simultaneously, vital signs will be continuously collected for about 1.5 minutes using the reference devices alongside data collected via the Comestai app; biochemical results will also be recorded. The accuracy of the app measurements compared to the reference devices and standard tests will be assessed for all parameters. CIs will be calculated using the bootstrap method. The proposed approach's effectiveness will be evaluated using various quality criteria, including the mean error, SD, mean absolute error, root mean square error, and mean absolute percentage error. The correlation between measurements obtained using the app and reference devices and standard tests will be evaluated using the Pearson correlation coefficient. Agreement between pairs of measurements (app vs reference devices and standard tests) will be represented using Bland-Altman plots. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and likelihood ratios will be calculated to determine the ability of the new app to accurately measure vital signs.
Data collection began in June 2024. As of March 25, 2025, we have recruited 1200 participants. The outcomes of the study are expected at the end of 2025. The analysis plan involves verifying and validating the parameters collected from mobile devices via the app, reference devices, and prescheduled blood tests, along with patient demographic data.
Our study will enhance and support the accuracy of data on vital sign detection through PPG, also introducing measurements of biochemical risk indicators. The evaluation of a large population will allow for continuous improvement in the performance and accuracy of artificial intelligence algorithms, reducing errors. Expanding research on mobile health solutions like Comestai can support preventive care by validating their effectiveness as screening tools and guiding future health care technology developments.
ClinicalTrials.gov NCT06427564; https://clinicaltrials.gov/study/NCT06427564.
早期发现生命体征变化是及时识别患者病情恶化的关键,能够实现及时干预并有可能预防不良后果。
在本研究中,将使用Comestai应用程序测量生命参数(心率、呼吸频率、血氧饱和度和血压),以确认与标准临床实践设备相比,光电容积脉搏波描记法的准确性,分析大量且多样化的人群。此外,该应用程序将有助于大数据收集,以提高算法在测量血红蛋白、糖化血红蛋白和总胆固醇方面的性能。
总共将连续招募3000名参与者以实现本研究的目标。在所有患者中,将记录个人数据、医疗状况和治疗概况。远程光电容积脉搏波描记法生命体征数据收集的“通过面部”方法包括使用移动设备(iOS或安卓)的前置摄像头记录参与者的面部约1.5分钟。同时,将使用参考设备连续收集生命体征约1.5分钟,同时通过Comestai应用程序收集数据;还将记录生化结果。将评估应用程序测量结果与参考设备和标准测试相比对于所有参数的准确性。将使用自助法计算置信区间。将使用各种质量标准评估所提出方法的有效性,包括平均误差、标准差、平均绝对误差、均方根误差和平均绝对百分比误差。将使用皮尔逊相关系数评估使用该应用程序与参考设备和标准测试获得的测量结果之间的相关性。测量值对(应用程序与参考设备和标准测试)之间的一致性将使用布兰德-奥特曼图表示。将计算灵敏度、特异性、阳性预测值、阴性预测值、准确性和似然比,以确定新应用程序准确测量生命体征的能力。
数据收集于2024年6月开始。截至2025年3月25日,我们已招募了1200名参与者。研究结果预计在2025年底得出。分析计划包括验证和确认通过应用程序、参考设备和预定血液检测从移动设备收集的参数以及患者人口统计学数据。
我们的研究将提高并支持通过光电容积脉搏波描记法进行生命体征检测的数据准确性,还将引入生化风险指标的测量。对大量人群的评估将使人工智能算法的性能和准确性不断提高,减少误差。扩大对Comestai等移动健康解决方案的研究可以通过验证其作为筛查工具的有效性并指导未来医疗技术发展来支持预防保健。
ClinicalTrials.gov NCT06427564;https://clinicaltrials.gov/study/NCT06427564 。