文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合16S rRNA和宏基因组测序揭示鸭肠道微生物群中关键抗生素抗性基因的分布。

Integrated 16S rRNA and metagenomic sequencing reveals the distribution of key antibiotic resistance genes in duck gut microbiota.

作者信息

Zeng Hongbo, Yang Hua, Fu Zixian, Ma Lingyan, Lu Lizhi, Zeng Tao, Xiao Yingping, Lyu Wentao

机构信息

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

College of Animal Science, Zhejiang A&F University, Hangzhou, China.

出版信息

Poult Sci. 2025 Apr 23;104(7):105206. doi: 10.1016/j.psj.2025.105206.


DOI:10.1016/j.psj.2025.105206
PMID:40294554
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12056789/
Abstract

The duck gut microbiota is essential for host health and is considered a potential reservoir for antibiotic resistance genes (ARGs). However, research on ARGs in the duck gut microbiota is limited. This study collected 120 intestinal content samples from five segments (duodenum, jejunum, ileum, cecum, and colorectum) of ducks raised under two rearing conditions (with or without an open-air swimming pool). We compiled a comprehensive inventory of microbial genes in the duck gut and conducted an analysis of microbial composition and function across all intestinal segments using 16S rRNA gene sequencing combined with metagenomics. The findings revealed that Firmicutes were the most prevalent microbes in all intestinal segments. In the foregut (duodenum, jejunum, and ileum), microbial functions were mainly related to genetic information processing such as transcription, translation, replication, and glycosynthesis/gluconeogenesis. Conversely, in the hindgut (cecum and colorectum), microbial functions were primarily associated with the biosynthesis of secondary metabolites and various metabolic pathways. The analysis of ARGs indicated a higher relative abundance of ARGs in the cecum and colorectum (P < 0.05) of ducks in the presence of an open-air swimming pool compared to the absence of one. Furthermore, through co-occurrence network analysis, we identified Bacteroides, Roseburia, Ruminococcus, and Blautia as potential hosts of ARGs such as tetQ, tet32, tet37, vanR, vanG, and acrB in the hindgut. This study provides new insights into the complex relationship between ARGs and the microbial community in duck intestines, laying a theoretical groundwork for understanding the transmission dynamics of ARGs in these ecosystems.

摘要

鸭肠道微生物群对宿主健康至关重要,被认为是抗生素抗性基因(ARGs)的潜在储存库。然而,关于鸭肠道微生物群中ARGs的研究有限。本研究收集了在两种饲养条件(有或没有露天游泳池)下饲养的鸭子五个肠道段(十二指肠、空肠、回肠、盲肠和结肠直肠)的120份肠道内容物样本。我们编制了鸭肠道微生物基因的综合清单,并结合宏基因组学使用16S rRNA基因测序对所有肠道段的微生物组成和功能进行了分析。研究结果表明,厚壁菌门是所有肠道段中最普遍的微生物。在前肠(十二指肠、空肠和回肠)中,微生物功能主要与遗传信息处理有关,如转录、翻译、复制以及糖合成/糖异生。相反,在后肠(盲肠和结肠直肠)中,微生物功能主要与次生代谢物的生物合成和各种代谢途径相关。对ARGs的分析表明,与没有露天游泳池的鸭子相比,有露天游泳池的鸭子盲肠和结肠直肠中ARGs的相对丰度更高(P < 0.05)。此外,通过共现网络分析,我们确定拟杆菌属、罗斯氏菌属、瘤胃球菌属和布劳特氏菌属是后肠中tetQ、tet32、tet37、vanR、vanG和acrB等ARGs的潜在宿主。本研究为ARGs与鸭肠道微生物群落之间的复杂关系提供了新的见解,为理解这些生态系统中ARGs的传播动态奠定了理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/e30f6f79de54/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/e09611f74241/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/459dff281053/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/2303e4262f3c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/356d0ba194e7/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/2288d90b3f2f/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/6fd677c963bb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/4ec27ef78d21/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/e30f6f79de54/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/e09611f74241/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/459dff281053/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/2303e4262f3c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/356d0ba194e7/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/2288d90b3f2f/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/6fd677c963bb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/4ec27ef78d21/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de29/12056789/e30f6f79de54/gr8.jpg

相似文献

[1]
Integrated 16S rRNA and metagenomic sequencing reveals the distribution of key antibiotic resistance genes in duck gut microbiota.

Poult Sci. 2025-4-23

[2]
Species and functional composition of cecal microbiota and resistance gene diversity in different Yunnan native chicken breeds: A metagenomic analysis.

Poult Sci. 2025-7

[3]
Integrating Gut Microbiome and Metabolomics with Magnetic Resonance Enterography to Advance Bowel Damage Prediction in Crohn's Disease.

J Inflamm Res. 2025-6-11

[4]
The risk of pathogenicity and antibiotic resistance in deep-sea cold seep microorganisms.

mSystems. 2025-6-17

[5]
A bloom of a single bacterium shapes the microbiome during outdoor diatom cultivation collapse.

mSystems. 2025-6-17

[6]
Microbial transfer through fecal strings on eggs affects leaf beetle microbiome dynamics.

mSystems. 2025-6-17

[7]
The characteristics of tissue microbiota in different anatomical locations and different tissue types of the colorectum in patients with colorectal cancer.

mSystems. 2025-6-17

[8]
Genomic characterization of antimicrobial resistance and mobile genetic elements in swine gut bacteria isolated from a Canadian research farm.

Anim Microbiome. 2025-6-18

[9]
Dietary resistant starch protects against post-antibiotic intestinal damage by restoring microbial homeostasis and preserving intestinal barrier function in meat duck.

Poult Sci. 2025-4-24

[10]
Do we need a standardized 16S rRNA gene amplicon sequencing analysis protocol for poultry microbiota research?

Poult Sci. 2025-7

本文引用的文献

[1]
Comparative assessment of microbiome and resistome of influent and effluent of sewage treatment plant and common effluent treatment plant located in Delhi, India using shotgun approach.

J Environ Manage. 2024-10

[2]
and carbohydrate active enzymes contribute to the reduced fat deposition in pigs.

Imeta. 2024-1-3

[3]
A comprehensive analysis of antibiotic resistance genes in the giant panda gut.

Imeta. 2024-2-6

[4]
Tracking investigation of archaeal composition and methanogenesis function from parental to offspring pigs.

Sci Total Environ. 2024-6-1

[5]
Longitudinal metagenomic study reveals the dynamics of fecal antibiotic resistome in pigs throughout the lifetime.

Anim Microbiome. 2023-11-8

[6]
Uncovering the biogeography of the microbial commmunity and its association with nutrient metabolism in the intestinal tract using a pig model.

Front Nutr. 2022-9-26

[7]
Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance.

Microbiome. 2022-3-4

[8]
Metagenomic Insights into Chicken Gut Antibiotic Resistomes and Microbiomes.

Microbiol Spectr. 2022-4-27

[9]
Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives.

Gut Microbes. 2022

[10]
Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies.

J Anim Sci Biotechnol. 2021-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索