Xi Guoyu, Lin Shisheng, Shen Tongjie, Pang Tao, Yu Zikang, Peng Yang, Zeng Lingwei, Ke Yuxiang, Zhou Zhehong, Chen Ronghua, Huang Feng, Chen Daqin
College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China.
Huzhou Key Laboratory of Materials for Energy Conversion and Storage, College of Science, Huzhou University, Huzhou, Zhejiang, 313000, P. R. China.
Adv Sci (Weinh). 2025 Jul;12(27):e2505232. doi: 10.1002/advs.202505232. Epub 2025 Apr 29.
Although phosphor ceramics are promising candidates for high-power laser lighting applications, their performance is seriously restricted by luminance saturation effects. This study proposes a novel transparent ceramic@sapphire composite material design, fabricated via a straightforward high-temperature sintering process, which differs from the conventional approach of incorporating high-thermal-conductivity microcrystalline grains. This kind of composite can effectively avoid luminescence grain dilution, and deliver significantly enhanced thermal conductivity (36.9 W·mK) alongside superior luminescence performance. This strategy demonstrates exceptional versatility across various ceramic systems, delivering luminescence improvements of 152-319% and enhancing luminance saturation thresholds by 100-233%, relative to traditional ceramic converters. Using LuCaMgSiO: xCe@sapphire as a representative example, the optimized composite enables substantial enhancements in luminous flux (5902 lm) and luminous efficacy (148 lm W) under blue laser excitation. Compared with commercial counterparts, practical applications in automotive headlights further validate the potential of this design, offering far higher luminance intensity, extended illumination distances (> 400 m), and more uniform color distribution. This study provides a scalable and universal strategy for advancing next-generation solid-state lighting.
尽管磷光陶瓷是高功率激光照明应用的有前途的候选材料,但其性能受到亮度饱和效应的严重限制。本研究提出了一种新颖的透明陶瓷@蓝宝石复合材料设计,通过简单的高温烧结工艺制备,这与传统的掺入高导热微晶颗粒的方法不同。这种复合材料可以有效避免发光晶粒稀释,并在显著提高热导率(36.9 W·mK)的同时提供卓越的发光性能。该策略在各种陶瓷系统中表现出非凡的通用性,相对于传统陶瓷转换器,发光性能提高了152-319%,亮度饱和阈值提高了100-233%。以LuCaMgSiO:xCe@蓝宝石为例,优化后的复合材料在蓝光激光激发下能够大幅提高光通量(5902 lm)和发光效率(148 lm/W)。与商业同类产品相比,在汽车前照灯中的实际应用进一步验证了这种设计的潜力,提供了更高的亮度强度、更远的照明距离(>400 m)和更均匀的颜色分布。本研究为推进下一代固态照明提供了一种可扩展的通用策略。