Zahradníková Alexandra, Pavelková Jana, Sabo Miroslav, Baday Sefer, Zahradník Ivan
Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Bioinformatics Laboratory, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
PLoS Comput Biol. 2025 Apr 29;21(4):e1012950. doi: 10.1371/journal.pcbi.1012950. eCollection 2025 Apr.
Ryanodine receptors (RyRs) serve for excitation-contraction coupling in skeletal and cardiac muscle cells in a noticeably different way, not fully understood at the molecular level. We addressed the structure of skeletal (RyR1) and cardiac (RyR2) isoforms relevant to gating by Ca2+ and Mg2+ ions (M2+). Bioinformatics analysis of RyR structures ascertained the EF-hand loops as the M2+ binding inhibition site and revealed its allosteric coupling to the channel gate. The intra-monomeric inactivation pathway interacts with the Ca2+-activation pathway in both RyR isoforms, and the inter-monomeric pathway, stronger in RyR1, couples to the gate through the S23*-loop of the neighbor monomer. These structural findings were implemented in the model of RyR operation based on statistical mechanics and the Monod-Wyman-Changeux theorem. The model, which defines closed, open, and inactivated macrostates allosterically coupled to M2+-binding activation and inhibition sites, approximated the open probability data for both RyR1 and RyR2 channels at a broad range of M2+ concentrations. The proposed mechanism of RyR operation provides a new interpretation of the structural and functional data of mammalian RyR channels on common grounds. This may provide a new platform for designing pharmacological interventions in the relevant diseases of skeletal and cardiac muscles. The synthetic approach developed in this work may find general use in deciphering mechanisms of ion channel functions.
兰尼碱受体(RyRs)在骨骼肌和心肌细胞的兴奋-收缩偶联过程中发挥作用的方式明显不同,在分子水平上尚未完全明确。我们研究了与Ca2+和Mg2+离子(M2+)门控相关的骨骼肌(RyR1)和心肌(RyR2)亚型的结构。对RyR结构的生物信息学分析确定了EF-手型环为M2+结合抑制位点,并揭示了其与通道门的变构偶联。在两种RyR亚型中,单体内部的失活途径与Ca2+激活途径相互作用,而在RyR1中更强的单体间途径通过相邻单体的S23*环与门偶联。这些结构发现被应用于基于统计力学和莫诺-怀曼-尚热定理的RyR运作模型中。该模型定义了与M2+结合激活和抑制位点变构偶联的关闭、开放和失活宏观状态,在广泛的M2+浓度范围内近似了RyR1和RyR2通道的开放概率数据。所提出的RyR运作机制基于共同基础对哺乳动物RyR通道的结构和功能数据提供了新的解释。这可能为设计针对骨骼肌和心肌相关疾病的药理干预措施提供新的平台。这项工作中开发的综合方法可能在解读离子通道功能机制方面得到广泛应用。