Zhang Lina, Shi Chongwen, Xie Qianli, Qi Zhen, Li Fangzhou, Li Guanghe, Zhang Fang
State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, PR China.
State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
Water Res. 2025 Aug 1;281:123676. doi: 10.1016/j.watres.2025.123676. Epub 2025 Apr 18.
Selective ion separation from acid mine drainage (AMD) under extreme acidic conditions presents a critical environmental challenge. While membrane-based technologies show promise for advancing water treatment processes, implementation in AMD treatment requires membranes that combine exceptional acid stability with precise ion sieving capabilities. Inspired by the ion retention characteristics of natural clay minerals, we have developed cation-selective membranes using vermiculite nanosheets as building blocks. The vermiculite membranes (VM) featured high acid stability and well-ordered two-dimensional nanochannels (2 Å), achieving a high H permeation rate of 3.24 mol m h. The VM demonstrated exceptional selectivity between monovalent and metals ions, with a H/Fe selectivity factor of 1284 in single-cation transport process. In complex multi-ion environments, the VM maintained stable separation performance, achieving a H/Fe selectivity of 1000 in mixed solutions containing H, K, Na, Ca, Mg and Fe. Additionally, VM effectively blocked other common AMD metals, including Cu, Co, Ni and Mn, while maintaining stable separation performance even at extreme low pH values (pH = 1). Through integrated theoretical calculations and experiments, we revealed that the synergistic effects of ultra-confined nanochannels (4∼5 Å) and surface charge created enhanced energy barriers for trivalent ion transport, resulting in high ion selectivity. Beyond providing an effective solution for AMD remediation, this work establishes vermiculite-based membranes as promising candidates for ion separation applications.
在极端酸性条件下从酸性矿山排水(AMD)中进行选择性离子分离是一项严峻的环境挑战。虽然基于膜的技术有望推动水处理工艺的发展,但在AMD处理中的应用需要结合出色的酸稳定性和精确离子筛分能力的膜。受天然粘土矿物离子保留特性的启发,我们开发了以蛭石纳米片为构建单元的阳离子选择性膜。蛭石膜(VM)具有高酸稳定性和有序的二维纳米通道(2 Å),实现了3.24 mol m⁻² h⁻¹的高H⁺渗透速率。VM在单价离子和金属离子之间表现出优异的选择性,在单阳离子传输过程中H⁺/Fe³⁺选择性因子为1284。在复杂的多离子环境中,VM保持稳定的分离性能,在含有H⁺、K⁺、Na⁺、Ca²⁺、Mg²⁺和Fe³⁺的混合溶液中实现了1000的H⁺/Fe³⁺选择性。此外,VM有效地阻挡了其他常见的AMD金属,包括Cu²⁺、Co²⁺、Ni²⁺和Mn²⁺,甚至在极低pH值(pH = 1)下也能保持稳定的分离性能。通过综合理论计算和实验,我们揭示了超受限纳米通道(4∼5 Å)和表面电荷的协同效应为三价离子传输创造了增强的能垒,从而导致高离子选择性。除了为AMD修复提供有效解决方案外,这项工作还将基于蛭石的膜确立为离子分离应用的有前途的候选材料。