Suppr超能文献

在大数据背景下探索医疗与慢性病预防健康管理的整合。

Exploring the integration of medical and preventive chronic disease health management in the context of big data.

作者信息

Wang Yueyang, Deng Ruigang, Geng Xinyu

机构信息

Office of Medical Defense Integration, The Fourth People's Hospital of Sichuan Province, Chengdu, China.

School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu, China.

出版信息

Front Public Health. 2025 Apr 15;13:1547392. doi: 10.3389/fpubh.2025.1547392. eCollection 2025.

Abstract

Chronic non-communicable diseases (NCDs) pose a significant global health burden, exacerbated by aging populations and fragmented healthcare systems. This study employs a comprehensive literature review method to systematically evaluate the integration of medical and preventive services for chronic disease management in the context of big data, focusing on pre-hospital risk prediction, in-hospital clinical prevention, and post-hospital follow-up optimization. Through synthesizing existing research, we propose a novel framework that includes the development of machine learning models and interoperable health information platforms for real-time data sharing. The analysis reveals significant regional disparities in implementation efficacy, with developed eastern regions demonstrating advanced closed-loop management via unified platforms, while western rural areas struggle with manual workflows and data fragmentation. The integration of explainable AI (XAI) and blockchain-secured care pathways enhances clinical decision-making while ensuring GDPR-compliant data governance. The study advocates for phased implementation strategies prioritizing data standardization, federated learning architectures, and community-based health literacy programs to bridge existing disparities. Results show a 30-35% reduction in redundant diagnostics and a 15-20% risk mitigation for cardiometabolic disorders through precision interventions, providing a scalable roadmap for resilient public health systems aligned with the "Healthy China" initiative.

摘要

慢性非传染性疾病(NCDs)给全球健康带来了重大负担,老龄化人口和碎片化的医疗体系使这一负担更加沉重。本研究采用全面的文献综述方法,在大数据背景下系统评估慢性病管理中医疗服务与预防服务的整合,重点关注院前风险预测、院内临床预防和院后随访优化。通过综合现有研究,我们提出了一个新颖的框架,其中包括开发机器学习模型和可互操作的健康信息平台以实现实时数据共享。分析揭示了实施效果方面存在显著的地区差异,东部发达地区通过统一平台展示了先进的闭环管理,而西部农村地区则在人工工作流程和数据碎片化方面面临困难。可解释人工智能(XAI)与区块链保障的护理路径的整合增强了临床决策,同时确保符合通用数据保护条例(GDPR)的数据治理。该研究倡导分阶段实施策略,优先考虑数据标准化、联邦学习架构和基于社区的健康素养计划,以弥合现有差距。结果显示,通过精准干预,冗余诊断减少了30 - 35%,心脏代谢紊乱风险降低了15 - 20%,为与“健康中国”倡议相一致的有韧性的公共卫生系统提供了一个可扩展的路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a04/12037625/797c5e804632/fpubh-13-1547392-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验