Suppr超能文献

用于预测唇腭裂患儿快速上颌扩弓技术的人工神经网络模型的开发

Development of artificial neural network model for predicting the rapid maxillary expansion technique in children with cleft lip and palate.

作者信息

Zahoor Ul Huqh Mohamed, Abdullah Johari Yap, Husein Adam, Al-Rawas Matheel, W Ahmad Wan Muhamad Amir, Jamayet Nafij Bin, Alam Mohammad Khursheed, Bin Yahya Mohd Rosli, Selvaraj Siddharthan, Tabnjh Abedelmalek Kalefh

机构信息

International Research Fellow, Faculty of Dentistry, SEGi University, Petaling Jaya, Selangor, Malaysia.

Craniofacial Imaging Laboratory, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.

出版信息

Front Dent Med. 2025 Apr 15;6:1530372. doi: 10.3389/fdmed.2025.1530372. eCollection 2025.

Abstract

AIM

The study aimed to determine the mid-palatal suture (MPS) maturation stages and to develop a binary logistic regression model to predict the possibility of surgical or non-surgical rapid maxillary expansion (RME) in children with unilateral cleft lip and palate (UCLP).

METHODS

A retrospective case control study was conducted. A total of 100 subjects were included. Data was gathered from the databases of Hospital Universiti Sains Malaysia and Hospital Raja Perempuan Zainab II, respectively. Cone beam computed tomography scans of both cleft and non-cleft individuals were utilized to determine the MPS maturation stages. Romexis software version 3.8.2 was used to analyze the images.

RESULTS

The results of the binary logistic regression model were utilized to establish the relationship between the probability (P) of a specific event of interest (P(Y = 1)) and a linear combination of independent variables (Xs) using the logit link function. Potential factors such as age, gender, cleft, category of malocclusion, and MPS were chosen which could play a role in predicting the technique of RME in children with UCLP and non-UCLP. A subset of these variables was validated via multilayer feed forward neural network (MLFFNN).

CONCLUSIONS

The effectiveness of the hybrid biometric model created in this work, which combines bootstrap and BLR with R-syntax was evaluated in terms of how accurately it predicted a binary response variable. A validation method based on an MLFFNN was used to evaluate the precision of the generated model. This leads to a good outcome.

摘要

目的

本研究旨在确定腭中缝(MPS)的成熟阶段,并建立二元逻辑回归模型,以预测单侧唇腭裂(UCLP)患儿进行手术或非手术快速上颌扩弓(RME)的可能性。

方法

进行一项回顾性病例对照研究。共纳入100名受试者。数据分别从马来西亚理科大学医院和拉贾珀empuan扎伊纳卜二世医院的数据库中收集。利用腭裂和非腭裂个体的锥形束计算机断层扫描来确定MPS的成熟阶段。使用Romexis软件版本3.8.2分析图像。

结果

二元逻辑回归模型的结果用于通过logit链接函数建立感兴趣的特定事件的概率(P(Y = 1))与自变量(Xs)的线性组合之间的关系。选择了年龄、性别、腭裂、错牙合类别和MPS等可能在预测UCLP和非UCLP患儿RME技术中起作用的潜在因素。这些变量的一个子集通过多层前馈神经网络(MLFFNN)进行了验证。

结论

根据其对二元响应变量的预测准确性,评估了本研究中创建的结合自助法和BLR并使用R语法的混合生物特征模型的有效性。使用基于MLFFNN的验证方法来评估生成模型的精度。这带来了良好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e761/12037576/383410e179c7/fdmed-06-1530372-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验