Ye Jinxiang, Qi Lifang, Deng Shuang, Wang Dandan, Cong Hengjiang, Qi Xiaotian, Zhou Qianghui, Cheng Hong-Gang
Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds and Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072 Wuhan, China.
Sci Adv. 2025 May 2;11(18):eadu4573. doi: 10.1126/sciadv.adu4573. Epub 2025 Apr 30.
Cross-electrophile coupling (XEC) is a powerful strategy for forming C-C bonds in synthetic organic chemistry. While XEC reactions between two electrophiles are well established, those involving three distinct electrophiles have remained underdeveloped. Herein, we report an intriguing formal triple XEC enabled by palladium/norbornene cooperative catalysis. Readily available aryl iodides, alkyl/aryl bromides, and propargyl esters are used as the distinct electrophilic coupling partners, leading to the synthesis of a diverse array of tetrasubstituted allenes. In particular, the challenging asymmetric formal triple XEC has also been realized through palladium/chiral norbornene cooperative catalysis, which uses the sterically hindered 2,6-disubstituted aryl bromides as the arylating reagents to prepare tetrasubstituted allenes bearing an axially chiral biaryl unit. Density functional theory calculations reveal that the selection of propargyl esters as electrophilic terminating reagents is key to the success of this reaction because it enables a thermodynamically favored pathway for reaction termination involving alkyne insertion followed by β-O elimination.
交叉亲电试剂偶联(XEC)是合成有机化学中形成碳-碳键的一种强大策略。虽然两种亲电试剂之间的XEC反应已得到充分确立,但涉及三种不同亲电试剂的反应仍未得到充分发展。在此,我们报道了一种由钯/降冰片烯协同催化实现的引人注目的形式上的三重XEC反应。易得的芳基碘化物、烷基/芳基溴化物和炔丙基酯被用作不同的亲电偶联伙伴,从而合成了一系列多样的四取代丙二烯。特别地,具有挑战性的不对称形式上的三重XEC反应也通过钯/手性降冰片烯协同催化得以实现,该反应使用空间位阻较大的2,6-二取代芳基溴化物作为芳基化试剂来制备带有轴手性联芳基单元的四取代丙二烯。密度泛函理论计算表明,选择炔丙基酯作为亲电终止试剂是该反应成功的关键,因为它能够实现一条热力学上有利的反应终止途径,该途径涉及炔烃插入随后的β-O消除。