Suppr超能文献

Mechanisms of Carotenoid Metabolism: Understanding the Links between Red Coloration, Cellular Respiration, and Individual Quality.

作者信息

Koch Rebecca E, Toomey Matthew B, Zhang Yufeng, Hill Geoffrey E

机构信息

Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA.

Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA.

出版信息

Integr Comp Biol. 2025 Sep 13;65(2):496-506. doi: 10.1093/icb/icaf022.

Abstract

In many species of birds, red carotenoid coloration serves as an honest signal of individual quality, but the mechanisms that link carotenoid coloration to animal performance remain poorly understood. Most birds that display red carotenoid coloration of feathers, bills, or legs ingest yellow carotenoids and metabolically convert the yellow pigments to red. Here, we review two lines of investigation that have rapidly advanced understanding of the production of red carotenoid coloration in birds, potentially providing an explanation for how red coloration serves as a signal of quality: the identification of the genes that enable birds to be red and the confirmation of links between production of red pigments and core cellular function. CYP2J19 and BDH1L were identified as key enzymes that catalyze the conversion of yellow carotenoids to red carotenoids both in the retinas of birds for enhanced color vision and in the feathers and bills of birds for ornamentation. This CYP2J19 and BDH1L pathway was shown to be the mechanism for production of red coloration in diverse species of birds and turtles. In other studies, it was shown that male House Finches (Haemorhous mexicanus) have high concentrations of red carotenoids within liver mitochondria and that redness is positively associated with mitochondrial function. These observations suggested that the CYP2J19 and BDH1L pathway might be tightly associated with mitochondrial function. However, it was subsequently discovered that male House Finches do not use the CYP2J19 and BDH1L pathway to produce red pigments and that both CYP2J19 and BDH1L localize in the endoplasmic reticulum, not the mitochondria. Thus, we have the most detailed understanding of links between cellular function and redness in a bird species for which the enzymes to convert yellow to red pigments remain unknown, while we have the best understanding of the enzymatic pathways to red in species for which links to cellular function are largely unstudied. Deducing whether and how signals of quality arise from these distinct mechanisms of ornamental coloration is a current challenge for scientists interested in the evolution of honest signaling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验