Chittepu Sireesha, Martha Sheshikala, Banik Debajyoty
School of CS & AI, SR University, Warangal, India.
School of Engineering, Anurag University, Hyderabad, India.
Sci Rep. 2025 May 2;15(1):15411. doi: 10.1038/s41598-025-96588-1.
This study explores the motivations behind integrating TinyML-based voice assistants into daily life, focusing on enhancing their user interface (UI) and functionality to improve user experience. This research discusses real-world applications like smart home automation, visually impaired assistive technologies, and healthcare monitoring. This review acknowledges various problems and helps us understand why TinyML exerts such significant implications in numerous domains. Researchers derive solutions from this study on how voice assistants integrated with TinyML can effectively analyze and adjust to user behaviour patterns in real-world scenarios, thereby enabling the delivery of dynamic and responsive content to enhance user engagement. The article also focused on limitations while implementing TinyML. Researchers will understand the detailed issues that are unavailable in most papers. This work explores features that can be embedded in voice assistants, like smart home automation, smart watches, smart glasses for visually impaired people, etc., using TinyML. A comparative review of current methods identifies areas of research gaps such as deployment difficulties, noise interference, and model efficiency on low-resource devices. From this study, researchers can directly identify the research gap with minimal effort, which may motivate them to focus more on solving the open problems due to optimize the problem identification time.
本研究探讨了将基于 TinyML 的语音助手集成到日常生活背后的动机,重点在于增强其用户界面(UI)和功能以改善用户体验。本研究讨论了智能家居自动化、视障辅助技术和医疗保健监测等现实世界应用。本综述承认了各种问题,并帮助我们理解为什么 TinyML 在众多领域具有如此重大的意义。研究人员从本研究中得出解决方案,即与 TinyML 集成的语音助手如何在现实场景中有效分析并适应用户行为模式,从而能够提供动态且响应式的内容以增强用户参与度。本文还关注了实施 TinyML 时的局限性。研究人员将了解大多数论文中未涉及的详细问题。这项工作探索了可以使用 TinyML 嵌入语音助手中的功能,如智能家居自动化、智能手表、为视障人士设计的智能眼镜等。对当前方法的比较性综述确定了研究差距领域,如部署困难、噪声干扰以及低资源设备上的模型效率。通过本研究,研究人员可以轻松直接地识别研究差距,这可能促使他们更加专注于解决这些开放性问题,从而优化问题识别时间。