Suppr超能文献

评估即食家禽中单核细胞增生李斯特菌和微生物群的生长动态:BP人工神经网络与传统方法相结合

Assessing the growth dynamics of Listeria monocytogenes and microbiota in RTE poultry: A combined BP-ANN and traditional approach.

作者信息

Deng Zichen, Li Wenqian, Song Yihuan, Wen Hongyi, Zhang Yongxian, Du Yan, Wang Yan, Huang Can, Chen Jingyu

机构信息

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

出版信息

Int J Food Microbiol. 2025 Jul 2;438:111221. doi: 10.1016/j.ijfoodmicro.2025.111221. Epub 2025 Apr 25.

Abstract

Ready-to-eat (RTE) poultry meats are increasingly popular as convenient snacks, but their refrigeration creates conditions that may facilitate the growth of foodborne pathogens, such as Listeria monocytogenes, posing significant food safety risks. To address this issue, a Backpropagation Artificial Neural Network (BP-ANN) model incorporating environmental factors was established to predict the growth of L. monocytogenes and background microbiota (BM) in RTE poultry meats-duck wings (DW), duck tongues (DT), and duck necks (DN)-at 4 °C, 10 °C, 15 °C, and 25 °C. Besides, the traditional predictive model was also developed to simulate the growth dynamics and maximum growth rates (μ). The Baranyi model, identified as the best fit based on RMSE (0.28 ± 0.05 log CFU/g) and AIC (5.68 ± 2.47), was employed as the foundation for a competition model incorporating the Jameson effect, demonstrating that BM reached the stationary phase faster, significantly inhibiting L. monocytogenes growth. With increasing temperature, the μ of L. monocytogenes rose from 0.05 ± 0.02 to 0.68 ± 0.09 h, while that of BM increased from 0.06 ± 0.02 to 0.77 ± 0.08 h. Notably, DW provided more favorable conditions for microbial growth compared to DN and DT. In addition, the BP-ANN model effectively captured complex nonlinear interactions among temperature, pH, A, and meat types, achieving high predictive accuracy (R = 0.9882). It thus offered a complementary explanation to traditional modeling. Model validation using an independent dataset at 8 °C, 12 °C, and 20 °C confirmed high predictive reliability of developed models, with error margins ranging from 0.2 to 0.5 log CFU/g. These findings provide valuable tools for predicting microbial growth in RTE poultry products, aiding in risk assessment, and informing temperature-dependent storage strategies to improve food safety.

摘要

即食(RTE)禽肉作为方便的零食越来越受欢迎,但冷藏会创造出可能促进食源性病原体生长的条件,如单核细胞增生李斯特菌,带来重大食品安全风险。为解决这一问题,建立了一个纳入环境因素的反向传播人工神经网络(BP-ANN)模型,以预测4°C、10°C、15°C和25°C下即食禽肉(鸭翅、鸭舌和鸭脖)中单核细胞增生李斯特菌和背景微生物群(BM)的生长情况。此外,还开发了传统预测模型来模拟生长动态和最大生长速率(μ)。基于均方根误差(RMSE,0.28±0.05 log CFU/g)和赤池信息准则(AIC,5.68±2.47)确定为最佳拟合的巴拉尼模型,被用作纳入詹姆森效应的竞争模型的基础,表明BM更快达到稳定期,显著抑制单核细胞增生李斯特菌的生长。随着温度升高,单核细胞增生李斯特菌的μ从0.05±0.02升高到0.68±0.09 h,而BM的μ从0.06±0.02升高到0.77±0.08 h。值得注意的是,与鸭脖和鸭舌相比,鸭翅为微生物生长提供了更有利的条件。此外,BP-ANN模型有效捕捉了温度、pH值、A和肉类类型之间复杂的非线性相互作用,实现了较高的预测准确性(R =

0.9882)。因此,它为传统建模提供了补充解释。使用8°C、12°C和20°C的独立数据集进行模型验证,证实了所开发模型具有较高的预测可靠性,误差范围为0.2至0.5 log CFU/g。这些发现为预测即食禽肉产品中的微生物生长提供了有价值的工具,有助于风险评估,并为依赖温度的储存策略提供信息,以提高食品安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验