Scariot Debora B, Staneviciute Austeja, Machado Rayanne R B, Yuk Simseok A, Liu Yu-Gang, Sharma Swagat, Almunif Sultan, Arona Mbaye El Hadji, Nakamura Celso Vataru, Engman David M, Scott Evan A
Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
Biomaterials. 2025 Nov;322:123358. doi: 10.1016/j.biomaterials.2025.123358. Epub 2025 Apr 22.
The causative agent of Chagas disease, the protozoan Trypanosoma cruzi, is an obligate intracellular parasite that is typically treated with daily oral administration of Benznidazole (BNZ), a parasiticidal pro-drug with considerable side effects. Previously, we effectively targeted intracellular parasites using ∼100 nm diameter BNZ-loaded poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) vesicular nanocarriers (a.k.a. polymersomes) in a T. cruzi-infected mouse model, without causing the typical side effects associated with standard BNZ treatment. Here, we exploit the structural versatility of the PEG-b-PPS system to investigate the impact of nanocarrier structure on the efficacy of BNZ nanotherapy. Despite sharing the same surface chemistry and oxidation-sensitive biodegradation, solid core ∼25 nm PEG-b-PPS micelles failed to produce in vivo trypanocidal effects. By applying the Förster Resonance Energy Transfer strategy, we demonstrated that PEG-b-PPS polymersomes promoted sustained intracellular drug release and enhanced tissue accumulation, offering a significant advantage for intracellular drug delivery compared to micelles with the same surface chemistry. Our studies further revealed that the lack of parasiticidal effect in PEG-b-PPS micelles is likely due to their slower rate of accumulation into solid tissues, consistent with the prolonged circulation time of intact micelles. Considering the cardiac damage typically induced by T. cruzi infection, this study also investigated the contributions of cardiac cellular biodistribution and payload release for both nanocarriers to the treatment outcomes of BNZ delivery. Our findings emphasize the crucial role of cardiac macrophages in the parasiticidal effect of BNZ formulations and highlight the critical importance of nanobiomaterial structure during therapeutic delivery.
恰加斯病的病原体——原生动物克氏锥虫,是一种专性细胞内寄生虫,通常采用每日口服苯硝唑(BNZ)进行治疗,苯硝唑是一种具有相当多副作用的杀寄生虫前体药物。此前,我们在克氏锥虫感染的小鼠模型中,使用直径约100纳米、负载BNZ的聚(乙二醇)-b-聚(硫化丙烯)(PEG-b-PPS)囊泡纳米载体(又称聚合物囊泡)有效靶向细胞内寄生虫,且未引发与标准BNZ治疗相关的典型副作用。在此,我们利用PEG-b-PPS系统的结构多样性,研究纳米载体结构对BNZ纳米疗法疗效的影响。尽管实心核约25纳米的PEG-b-PPS胶束具有相同的表面化学性质和氧化敏感型生物降解特性,但未能产生体内杀锥虫效果。通过应用福斯特共振能量转移策略,我们证明PEG-b-PPS聚合物囊泡促进了细胞内药物的持续释放并增强了组织蓄积,与具有相同表面化学性质的胶束相比,在细胞内药物递送方面具有显著优势。我们的研究进一步表明,PEG-b-PPS胶束缺乏杀寄生虫效果可能是由于它们在实体组织中的蓄积速率较慢,这与完整胶束延长的循环时间一致。考虑到克氏锥虫感染通常会引发心脏损伤,本研究还调查了两种纳米载体的心脏细胞生物分布和载药量释放对BNZ递送治疗效果的贡献。我们的研究结果强调了心脏巨噬细胞在BNZ制剂杀寄生虫作用中的关键作用,并突出了纳米生物材料结构在治疗递送过程中的至关重要性。